• Title/Summary/Keyword: Green Soil

Search Result 1,156, Processing Time 0.037 seconds

Effect of Tillage Depths on Methane Emission and Rice Yield in Paddy Soil during Rice Cultivation (논토양에서 경운방법이 메탄발생과 쌀수량에 미치는 영향)

  • Cho, Hyeoun-Suk;Seo, Myung-Chul;Park, Tea-Sun;Kang, Hang-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.2
    • /
    • pp.167-173
    • /
    • 2015
  • Green manure crops are organic materials that can supply organic matter and substitute chemical fertilizer, yet emit methane while being decomposed. Therefore, we experimented with different kinds of Green manure crops and tillage depth in order to decrease the amount of methane emitted when utilizing Green manure crops in paddy soil. The amount of methane emitted during the cultivation period of rice started to increase after transplanting and peaked at 63, and 74 days after transplanting, than decreased to almost none starting from 106 days. According to the kind of Green manure crop, it was highest in barley, then hairy vetch and chemical fertilizer. Depending on the tillage depth, the amount of methane emitted decreased by 22.5% in chemical fertilizer, 12.4% in hairy vetch and 11.7% in barley in 20cm tillage compared to 10cm tillage. The air temperature of methane test period was $30{\sim}40^{\circ}C$, and the soil temperature was more than about $2{\sim}10^{\circ}C$ lower than the air temperature. Due to the irrigation started before transplanting, the oxidation-reduction potential (Eh) of soil was rapidly reduced, and showed negative (-) values. Eh values mostly kept the range of -300~-500 mV during rice cultivation. It rapidly increased 106 days after transplanting. Rice yield the highest in hairy vetch and did not show differences according to tillage depth. Methane emission could be effectively reduced if the paddy soil was tilled by 20 cm during the application of hairy vetch.

Comparison of Color Quality, Winter Color, and Spring Green-up among Major Turfgrasses Grown under Three Different Soil Systems (세 종류 잔디지반 구조에서 주요 초종의 엽색품질, 동절기 색상 및 이른 봄 녹화 특성비교)

  • Kim, Kyoung-Nam
    • Horticultural Science & Technology
    • /
    • v.31 no.3
    • /
    • pp.259-268
    • /
    • 2013
  • This study was carried out to evaluate the visual turfgrass's color quality, winter color, and spring green-up under three different soil systems and to make a practical use for sports turf design and construction. Several turfgrasses were evaluated in multi-layer, USGA and mono-layer systems. Turfgrass entries in the study comprised of 3 cultivars from Korean lawngrass (Zoysia japonica Steud.) of typical warm-season grass (WSG) and 3 blends and 3 mixtures from Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), and tall fescue (TF, Festuca arundinacea Schreb.) of cool-season grass (CSG). Significant differences were observed in the turfgrass's color quality, winter color, and spring green-up in the study. Seasonal variation of visual turf color greatly occurred according to soil systems and turfgrasses. Multi-layer and USGA systems were highly associated with better visual color ratings, as compared with mono-layer system. Regardless of soil system, visual turf color in all entries was better from spring to fall than in winter. Great color differences were observed during a period of early December to early spring. CSG produced a better color quality over WSG in any soil system. Overall color ratings for CSG were KB > PR > Mixtures > TF. As for a winter color, its ranking was USGA > multi-layer > mono-layer system. No difference was found in winter among cultivars of Korean lawngrass, being completely brown, but great differences among CSG. Rated best for winter color was PR, followed by CSG mixtures, KB and finally TF in order. It was generally conceded that fast green-up in spring was greatly related with multi-layer over mono-layer system and also CSG over WSG. Among CSG, TF had a fastest green-up. PR was also fast in green-up, but poor in color uniformity. KB, however, was the slowest due to shallow rooting system, when compared with other CSGs. These results demonstrate color differences were greatly variable according to soil systems and also among turfgrass species. A precise decision should be made in selecting turfgrass species and soil system. Multi-layer and USGA systems were considered as the suitable one for turfgrass color quality, winter color and spring green-up. It is a great necessity to combine proper soil system, right turfgrass species, and appropriate mixing rates by a concept-oriented approach, when establishing garden, parks, soccer field, and golf courses and so on.

Comparison Between Methods for Suitability Classification of Wild Edible Greens (산채류 재배적지 기준설정 방법 간의 비교 분석)

  • Hyun, Byung-Keun;Jung, Sug-Jae;Sonn, Yeon-Kyu;Park, Chan-Won;Zhang, Young-Seon;Song, Kwan-Cheol;Kim, Lee-Hyun;Choi, Eun-Young;Hong, Suk-Young;Kwon, Sun-Ik;Jang, Byoung-Choon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.696-704
    • /
    • 2010
  • The objective of this study was analysis of two methods of land suitability classification for wild edible green. One method was Maximum limiting factor method (MLFM) and the other was Multi-regression method (MRM) for land suitability classification for wild edible green. The investigation was carried out in Pyeongchang, Hongcheong, Hoeingseong, and Yanggu regions in Korea. The obtained results showed that factors related to the decision classification of the land suitability for wild edible green cultivation were land slope, altitude, soil morphology and gravel contents so on. The classification of the best suitability soil for wild edible greens were fine loamy (silty), valley or fan of soil morphology, well drainage class, B-slope (2~7%), available soil depth deeper than 100cm, and altitude higher than 501m. Contribution of soil that influence to crop yields using Multi-regression method were slope 0.30, altitude 0.22, soil morphology 0.13, drainage classes 0.09, available soil depth 0.07, and soil texture 0.01 orders. Using MLFM, area of best suitable land was 0.2%, suitable soil 15.0%, possible soil 16.7%, and low productive soil 68.0% in Hongcheon region of Gangwon province. But, area of best suitable land was 35.1%, suitable soil 30.7%, possible soil 10.3%, and low productive soil 23.9% by MRM. There was big difference of suitable soil area between two methods (MLFM and MRM). When decision classificatin of the land suitability for wild edible green cultivation should consider enough analysis methods. Furthermore, to establishment of land suitability classification for crop would be better use MRM than MLFM.

Differences of Soil Enzyme Activity after Incorporation with Chinese Milk Vetch Litter Cut at Different Growth Stages

  • Lee, Ji-Hyun;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.341-347
    • /
    • 2007
  • Chinese milk vetch (CMV) is a winter legume that is commonly used as cover crop in Korea. Kill date of cover crop for addition into soil affects N content in cover crop and N availability in soil. This study was conducted to evaluate the effect of CMV as green manure cover crop according to kill dates before growing corn without artificial fertilizer. Top of CMV cut three times on 13 April, 27 April, and 11 May were added into soil at a rate of 600 kg per 10a. Sugar content in CMV litter was persistently decreased from mid-April to late-May. The decrease of sugar content might be due to the transformation into starch and/or other storage or structural constituents. The decreased amount of sugars was greater than 12% and the increased amount of starch was less than 0.2%. Concentration of $NH_4^+$ in soil treated by CMV litter cut on May 11 was slightly higher than that in the treatment with early-cut (April 13) CMV, the concentration at 28 and 49 DAT (days after treatment) was higher in the treatment with late-cut CMV litter. Regardless of cut (kill) date of CMV, the phosphatase activity in the treatment of CMV litter was higher compared to the untreated control. Soil dehydrogenase activity was increased steadily by addition of CMV litter implying total microbial activities in the soil were increased. Our results demonstrate that the status of cover crop species at kill date is an important factor influencing soil enzyme activities derived from microorganisms. Therefore, the optimal kill date of cover crop should be examined to improve the efficiency of cover crop as green manure crop regarding the practical sequence in cropping system.

Comparison of Carbon Sequestration Potential of Winter Cover Crop Cultivation in Rice Paddy Soil

  • Lee, Seul-Bi;Haque, Mozammel;Pramanik, Prabhat;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.234-242
    • /
    • 2011
  • BACKGROUND: Cultivation of winter cover crops is strongly recommended to increase land utilization efficiency, animal feeding material self-production, and to improve soil and environmental quality. METHODS AND RESULTS: Four major winter crops (barley, Chinese milk vetch, hairy vetch, and rye) having different C/N ratio were seeded in silt loam paddy soil in the November 2007 and the aboveground biomass was harvested on the late May 2008 to evaluate its effectiveness as green manure, and root biomass distribution was characterized at the different depth (0-60 cm) to study its effect on physical properties and carbon sequestration in soil. During this experiment, the naturally growing weed in the rice paddy soil in Korea, short awn foxtail (Alopecurus aequalis Sobol), was considered as control treatment. Above-ground biomass of all cover crops selected was significantly higher than that of the control treatment (2.8 Mg/ha). Comparatively higher above-ground biomass productivity of rye and barley (15.8 and 13.5 Mg/ha, respectively) suggested that these cover crops possibly had the highest potential as a green manure and animal feeding material. Root biomass production of different cover crops followed the same trend as that for their above ground biomass. Rye (Secale cereal) might have the highest potential for soil C accumulation (7893 C kg/ha) by root biomass development, and then followed by barley (6985 C kg/ha), hairy vetch (6467 C kg/ha), Chinese milk vetch (6671 C kg/ha), and control (5791 C kg/ha). CONCLUSION(s): Cover crops like rye and barley having high biomass productivity might be the most effective winter cover crops to increase organic carbon distribution in different soil aggregates which might be beneficial to improve soil structure, aeration etc. and C sequestration.

Comparison of Summer Turf Performance, Color, and Green Color Retention among Cool-Season Grasses Grown under USGA Soil System (USGA 지반구조에서 한지형 잔디의 여름 고온기 적응력, 색상 및 연중 녹색 유지기간 비교)

  • Kim Kyoung-Nam
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.5 s.112
    • /
    • pp.83-93
    • /
    • 2005
  • Research was initiated to investigate turf performance under USGA soil system. USGA system 45 centimeters deep was built with rootzone layer, intermediate layer, and drainage layer. Six turfgrass entries were comprised of 3 blends and 3 mixtures from cool-season grasses (CSG). Turfgrass color and quality ratings were best in spring and fall, especially early May to early July and late August to early November. Kentucky bluegrass (KB) consistently produced the greatest performance, while perennial ryegrass (PR) the poorest. Intermediate turf performance between KB and PR was observed with tall fescue (TF). Among CSG mixtures it increased with KB but decreased with PR. There were considerable variations in summer turf Performance. No summer drought injury was found in KB and TF. However, PR showed poor performance through summer as compared with others. Among mixtures, it decreased with PR. It was suggested that PR mix in less than $20\%$ in the mixtures to have an acceptable quality in summer. Cultural intensity also affected it. With lowering mowing height, KB of rhizomatous-type in growth habit kept good quality, while PR and TF with bunch-type in growth habit poor quality. Mowing quality was greatly different among CSG. KB produced clean-cut surface, but PR unclean one. If had an intermediate mowing quality between KB and PR. A great difference in green color retention was observed among CSG. The longest CSG was PR that kept green for 339 days, while the shortest one TF for 267 days. KB continued to keep green for 290 days. The mixtures kept green in color for 292 to 315 days, depending on turfgrass mixing intensity. The greater the PR in content, the longer the green color duration. These results demonstrate that KB was the best and PR the worst among CSG grown in USGA system under a domestic climate, in regards of turf quality, color, mowing quality, summer turf performance and green color duration. KB and TF are most adequate for high-maintenance and low-maintenance area, respectively. In case of mixtures for high-quality turf, it was desirable to use KB-based mixture with PR of below $20\%$ in seeding rate.

Development of Revegetation Methods Using Fresh Woodchip from Construction Works (건설현장 발생재를 활용한 비탈면 녹화에 관한 연구)

  • Nam, Sang-Jun;Kim, Kyung-Hoon;Yeo, Hwan-Joo;Jung, Ji-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.3
    • /
    • pp.86-95
    • /
    • 2004
  • This study was conducted to develop recycle revegetation methods for the restoration of the steep slopes by using fresh wood chip from construction sites. In general, the fresh wood chips can be used as soil media for the restoration works, because they can increase infiltration of rainfall and give enough porous to breathe and elongate for the root growth as well as economic value. The experiment was carried out to compare the effect of fresh wood chips from different mixing with soil, organic material and macromolecular compound which used for slope restoration works conducted by Hyunwoo green(Ltd.). The main results by monitoring for two years are summarized as follows; 1. The soil media made with low percentage of fresh wood chip covered quickly by herb plants. Especially, the soil mixture Type C (wood chip 20%) showed 80 percent ground coverage within two months after seeding. 2. The soil mixture type E (wood chip 40%) and type F (wood chip 50%) which contains more fresh wood chips than soil type C was under 30 percent ground coverage because wood plants are germinated well. If the restoration works aims at making forest, then the soil type E and F would be recommended than using soil type C. 3. Among the woody plants, Ailanthus alfissima, Pinus rigida, Pinus densiflora, and Albizzia julibrissin showed high percentage of germination rates and vigorous growth. In case of shrubs, Lespedeza cyrtobotria and Indigofera pseudo-tintoria scored high percentage of germination rates. 4. In native plants, Chrysanthemum indicum, Artemisia princeps, Lutos corniculatus and Imperata cylindrica showed high percentage of appearance. In case of introduced herbs, Coreopsis lanceolata, Coreopsis tinctoria and Oenothera oborata grew so vigorously. 5. The soil types which including fresh wood chips over 30-40 percentage showed the most diverse plant composition and the most effective germination rates and growth pattern with woody plants. 6. This works to develop recycle revegetation methods using fresh wood chips need more efforts for monitoring the exact effect of fresh wood chips as the soil media.

Investigation on Translocation of De-icing Salts influenced by the Intensity of Foliar Damage of Roadside Trees in Chung-ju City (충주시 가로수의 황변정도에 따른 토양 내 제설제 성분의 흡수이행성 평가)

  • Kim, Jae-Young;Kim, Won-Tae;Yoon, Young-Han;Ju, Jin-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Use of de-icing salts results in accumulation of high concentrations of ions on roadside soils and tree. The purpose of this study isto determine translocation of seasonal impact of exchangeable cations originating from de-icing salt on roadside surface soil-plant influenced by the intensity of foliar damage (NY = 0-25%, SY = 26-50%, CY = 51-75%) of trees. This paper investigated the concentration of four exchangeable cations ($K^+$, $Ca^{2+}$, $Na^+$, and $Mg^{2+}$) on the roadside surface soil. The tree (Ginko biloba) samples were collected from the Konkuk and Judeok intersections in Chung-ju city. The sequential extraction procedure was applied to 120 soil samples of the soilsurface and 30 tree samples. Four cation exchange ions were determined by ICP-OES. The content of four exchangeable cations present on roadside soil was found to be the lowest in NY but highest in CY from tree pits in the order of NY < SY < CY. Especially, the results were apparent during spring time compared to other seasons. Soil collected from tree pits had the highest concentration of $Ca^{2+}$ possibly due to a higher volume of traffic on those streetsresulting in splashing of more calcium chloride ($CaCl_2$). The analysis of three exchangeable cations ($K^+$, $Mg^{2+}$, and $Na^+$) in the tree leaves revealed higher levels than roadside surface soil when foliar damage ratio increased in the order of NY < SY < CY in summer. In addition, a strong positive linear relationship was observed between the concentration of exchangeable cations in soil and trees. It is hypothesized that the results of this study can be a valuable baseline for managing de-icing salt on roadside soil and trees, in order to mitigate the salt stress that can damage the roadside soil and trees.

Modeling the Effects of Low Impact Development on Runoff and Pollutant Loads from an Apartment Complex

  • Jeon, Ji-Hong;Lim, Kyoung-Jae;Choi, Dong-Hyuk;Kim, Tae-Dong
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.167-172
    • /
    • 2010
  • The effects of low impact development (LID) techniques, such as green roofs and porous pavements, on the runoff and pollutant load from an apartment complex were simulated using the Site Evaluation Tool (SET). The study site was the Olympic Village, a preexisting apartment complex in Seoul, South Korea, which has a high percentage of impervious surfaces (approximately 72% of the total area). Using the SET, the effects of replacing parking lots, sidewalks and driveways (37.5% of the total area) having porous pavements and rooftops (14.5% of the total area) with green roofs were simulated. The simulation results indicated that LID techniques reduced the surface runoff, and peak flow and pollutant load, and increased the evapotranspiration and soil infiltration of precipitation. Per unit area, the green roofs were better than the porous pavements at reducing the surface runoff and pollutant loads, while the porous pavements were better than green roofs at enhancing the infiltration to soil. This study showed that LID methods can be useful for urban stormwater management and that the SET is a useful tool for evaluating the effects of LID on urban hydrology and pollutant loads from various land covers.

Adsorption of Heavy Metals by Natural Adsorbents of Green Tea and Ginseng Leaves (녹차잎과 인삼잎의 중금속 흡착능 평가 연구)

  • Kim, Sohyun;Song, Jinyoung;Yoon, Kwangsuk;Kang, Eunmi;Song, Hocheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.128-134
    • /
    • 2017
  • This work presents the adsorption capability of green tea and ginseng leaves to adsorb heavy metals such as Cd(II), Cu(II), and Pb(II) in aqueous solution. FT-IR analysis indicates the presence of oxygen containing functional groups (carboxyl groups) in two kinds of leaves. High pH condition was favorable to the adsorption of heavy metal ions due to the enhanced electrostatic attraction and the precipitation reaction of metal ions. The adsorption of Cd(II), Cu(II), and Pb(II) reached equilibrium within 10 min, achieving high removal efficiencies of 80.3-97.5%. The adsorption kinetics data of heavy metal ions were fitted well with the pseudo-second-order kinetic model. The maximum adsorption amounts of Cd(II), Cu(II), and Pb(II) ions were 8, 3.5, and 15 mg/g, respectively, in the initial concentration range from 0.15 to 0.75 mM. Based on the fitting data obtained from isotherm models, heavy metal adsorption by green tea and ginseng leaves could occur via multi-layer sorption.