• Title/Summary/Keyword: Green Smart School

Search Result 64, Processing Time 0.025 seconds

Estimation of the Input Wave Height of the Wave Generator for Regular Waves by Using Artificial Neural Networks and Gaussian Process Regression (인공신경망과 가우시안 과정 회귀에 의한 규칙파의 조파기 입력파고 추정)

  • Jung-Eun, Oh;Sang-Ho, Oh
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.315-324
    • /
    • 2022
  • The experimental data obtained in a wave flume were analyzed using machine learning techniques to establish a model that predicts the input wave height of the wavemaker based on the waves that have experienced wave shoaling and to verify the performance of the established model. For this purpose, artificial neural network (NN), the most representative machine learning technique, and Gaussian process regression (GPR), one of the non-parametric regression analysis methods, were applied respectively. Then, the predictive performance of the two models was compared. The analysis was performed independently for the case of using all the data at once and for the case by classifying the data with a criterion related to the occurrence of wave breaking. When the data were not classified, the error between the input wave height at the wavemaker and the measured value was relatively large for both the NN and GPR models. On the other hand, if the data were divided into non-breaking and breaking conditions, the accuracy of predicting the input wave height was greatly improved. Among the two models, the overall performance of the GPR model was better than that of the NN model.

Development of a UAV-Based Urban Thermal Comfort Assessment Method (UAV 기반 도시 공간의 열 쾌적성 평가기법 개발)

  • Seounghyeon Kim;Bonggeun Song;Kyunghun Park
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.61-77
    • /
    • 2024
  • The purpose of this study was to develop a method for rapidly diagnosing urban thermal comfort using Unmanned Aerial Vehicle (UAV) based data. The research was conducted at Changwon National University's College of Engineering site and Yongji Park, both located in Changwon, Gyeongsangnam-do. Baseline data were collected using field measurements and UAVs. Specifically, the study calculated field measurement-based thermal comfort indices PET and UTCI, and used UAVs to create and analyze vegetation index (NDVI), sky view factor (SVF), and land surface temperature (LST) images. The results showed that UAV-predicted PET and UTCI had high correlations of 0.662 and 0.721, respectively, within a 1% significance level. The explanatory power of the prediction model was 43.8% for PET and 52.6% for UTCI, with RMSE values of 6.32℃ for PET and 3.16℃ for UTCI, indicating that UTCI is more suitable for UAV-based thermal comfort evaluation. The developed method offers significant time-saving advantages over traditional approaches and can be utilized for real-time urban thermal comfort assessment and mitigation planning

An historical analysis on the carbon lock-in of Korean electricity industry (한국 전력산업의 탄소고착에 대한 역사적 분석)

  • Chae, Yeoungjin;Roh, Keonki;Park, Jung-Gu
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.125-148
    • /
    • 2014
  • This paper performs a historical analysis on the various factors contributing to the current carbon lock-in of Korean electricity industry by using techo-institutional complex. The possibilities of the industry's carbon lock-out toward more sustainable development are also investigated. It turns out that market, firm, consumer, and government factors are all responsible for the development of the carbon lock-in of Korean power industry; the Korean government consistently favoring large power plants based on the economy of scale; below-cost electricity tariff; inflation policy to suppress increases in power price; rapid demand growth in summer and winter seasons; rigidities of electricity tariff; and expansion of gas-fired and imported coal-fired large power plants. On the other hand, except for nuclear power generation and smart grid, environment laws and new and renewable energy laws are the other remaining factors contributing to the carbon lock-out. Considering three key points that Korea is an export-oriented economy, the generation mix is the most critical factor to decide the amounts of carbon emission in the power industry, and the share of industry and commercial power consumption is over 85%, it is unlikely that Korea will achieve the carbon lock-out of power industry in the near future. Therefore, there are needs for more integrated approaches from market, firm, consumer, and government all together in order to achieve the carbon lock-out in the electricity industry. Firstly, from the market perspective, it is necessary to persue more active new and renewable energy penetration and to guarantee consumer choices by mitigating the incumbent's monopoly power as in the OECD countries. Secondly, from the firm perspective, the promotion of distributed energy system is urgent, which includes new and renewable resources and demand resources. Thirdly, from the consumer perspective, more green choices in the power tariff and customer awareness on the carbon lock-out are needed. Lastly, the government shall urgently improve power planning frameworks to include the various externalities that were not properly reflected in the past such as environmental and social conflict costs.

A Comparative Study on Mapping and Filtering Radii of Local Climate Zone in Changwon city using WUDAPT Protocol (WUDAPT 절차를 활용한 창원시의 국지기후대 제작과 필터링 반경에 따른 비교 연구)

  • Tae-Gyeong KIM;Kyung-Hun PARK;Bong-Geun SONG;Seoung-Hyeon KIM;Da-Eun JEONG;Geon-Ung PARK
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.78-95
    • /
    • 2024
  • For the establishment and comparison of environmental plans across various domains, considering climate change and urban issues, it is crucial to build spatial data at the regional scale classified with consistent criteria. This study mapping the Local Climate Zone (LCZ) of Changwon City, where active climate and environmental research is being conducted, using the protocol suggested by the World Urban Database and Access Portal Tools (WUDAPT). Additionally, to address the fragmentation issue where some grids are classified with different climate characteristics despite being in regions with homogeneous climate traits, a filtering technique was applied, and the LCZ classification characteristics were compared according to the filtering radius. Using satellite images, ground reference data, and the supervised classification machine learning technique Random Forest, classification maps without filtering and with filtering radii of 1, 2, and 3 were produced, and their accuracies were compared. Furthermore, to compare the LCZ classification characteristics according to building types in urban areas, an urban form index used in GIS-based classification methodology was created and compared with the ranges suggested in previous studies. As a result, the overall accuracy was highest when the filtering radius was 1. When comparing the urban form index, the differences between LCZ types were minimal, and most satisfied the ranges of previous studies. However, the study identified a limitation in reflecting the height information of buildings, and it is believed that adding data to complement this would yield results with higher accuracy. The findings of this study can be used as reference material for creating fundamental spatial data for environmental research related to urban climates in South Korea.