• 제목/요약/키워드: Green Roof Load

검색결과 37건 처리시간 0.021초

옥상녹화하중이 LH 공동주택 및 부대복리시설의 옥상층 슬래브 설계에 미치는 영향 (The Effect of Green Roof Load on the Structural Design of Roof Slab of LH Housing and Service Facilities)

  • 이범식;권혁삼;김정곤;김지현
    • 토지주택연구
    • /
    • 제7권1호
    • /
    • pp.53-63
    • /
    • 2016
  • 본 논문은 옥상녹화하중 세 가지 유형(경량형, 중량형, 혼합형)이 한국토지주택공사(이하 LH)에서 공급하는 공동주택과 부대복리시설의 옥상층 슬래브에 미치는 영향을 구조해석과 설계를 통해 평가하고, 이를 토대로 옥상녹화하중이 작용하는 옥상층 슬래브의 구조설계시 활용가능한 배근 가이드 라인을 제시하였다. 구조해석 및 설계결과, 옥상녹화하중의 종류에 관계없이 LH 공동주택의 옥상층 슬래브는 슬래브 주근을 D10 철근 200~250mm 간격으로 배근할 경우 안전하며, 슬래브 두께도 150mm로 적용가능한 것으로 나타났다. 콘크리트 설계강도가 24, 27, 30MPa로 변화하여도 옥상층 슬래브의 슬래브 주근은 D10 철근을 200~250mm 배근하고 슬래브 두께도 150mm가 적용가능한 것으로 나타났다. 옥상녹화하중이 작용하는 부대복리시설의 2방향 슬래브는 토양 종류와 토심 두께에 관계없이 D10철근을 200mm 간격으로 배근하고 슬래브 두께도 150mm로 적용가능한 것으로 나타났다.

건축물 옥상녹화에 따른 식재기반구성의 적재하중에 관한 연구 (A Study on the Live Load According to Composition of the Planting Base of Green Roof)

  • 김성수;서경호;김효열;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2004년도 학술.기술논문발표회
    • /
    • pp.85-90
    • /
    • 2004
  • We divided the planting bale into waterproof layer, drainage layer and soil layer so at to investigate changes of live load according to species of wood and composition of the base to make rooftops green. The results are follows, 1. As concerning construction and live load for green roof, sheet waterproofing is superior. 2. When materials of drainage are changed crushed gravel into artificial lightweight graval or ferrite, live load of planting bale is decreased about 22% and 25% in order. 3. When ingredients of soil are chased normal sand into volcanic sand, live load of base is decreased about 28%. Especially, when it is changed into ferrite, 54% of live load is decreased. 4. In this study, all live load we concerned excesses the standard about roof live load of office, school and house. Hence, structure has to be concerned thoroughly when making rooftops green. But, we judge that various methods for making rooftops green can be applied if we consider roof garden when we plan new buildings.

  • PDF

옥상녹화시스템의 식재방식에 따른 단열효과의 정량적 분석 (Quantitative Analysis on the Insulating Effect by the Green Roof Planting System)

  • 장희경;조홍제;여인애;윤성환
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.873-876
    • /
    • 2008
  • The purpose of this study was to investigate Green Roof System's thermal performance using dynamic heat load simulation programs related to architectural environment. In results, it is found out that the thermal performance of Green Roof System is stabler than that of roof slab system which means that it is possible to create pleasant indoor environment and save the heating and cooling load.

  • PDF

도심 오피스건물의 옥상녹화 조성 유형별 건물에너지 절감 비교 연구 (Comparative of Energy-Saving by Green Roof Type on Urban Office Building)

  • 김정호;권기욱;주창훈;윤용한
    • 한국환경과학회지
    • /
    • 제23권8호
    • /
    • pp.1437-1446
    • /
    • 2014
  • This study, the urban energy used office building green roof type composition of the target by analyze building energy reductions. Green roof is total 6 types(type A~F) were selected, EnergyPlus the energy simulation programs were used. Top floor of green roof types evaluation, the reduction of the cooling peak load type E(1.26%), type D(1.30%), type C(1.37%), type B(1.45%), type F(1.49%), and heating peak load is type D(1.32%), type E(1.40%), type C(1.47%), type F(1.69%), type B(2.13%) order. Annual cooling load of heating load is reduced more than about 1% effect. The heating load reduction ratio for a maximum of 9% respectively. Cooling peak load of the building energy performance evaluation of type F > type B > type C > type D > type E in the order and in the case of peak loads heating type B > type F > type D > type E>type C order. Annual total energy use reduction of 1.07 to 1.22% and earn, type B in the best good. In primary energy use reductions in the presence of a green roof were in the 4249~4876 kWh/yr. Annual $CO_2$ emissions reductions of unapplied type A were analyzed on average 469.78 kg.

모델을 이용한 하절기 옥상정원 해석 (The Analysis of Green Roof during the Summer by Numerical Method)

  • 변기홍
    • 한국태양에너지학회 논문집
    • /
    • 제36권5호
    • /
    • pp.51-62
    • /
    • 2016
  • The purpose of this paper is to study the effectiveness of a green roof by simple mathematical model. The developed model simulates a green roof during the summer. The results explain and support the claims in the literature such that effectiveness of a green roof depends on the climate condition, and on the insulation condition of the roof. If insolation can not be reduced more than 60% by the shading effects of a green roof, more active measures than green roof seem necessary. The analysis tools like presented in the paper is necessary especially to consider climate effect, to design, and also to test green roof.

경량형 옥상녹화에 따른 열부하 저감 잠재성 연구 (Reduction Potential for Thermal Load by Extensive Green Roofs)

  • 김연미;남미아;장대희;김현수;김현옥
    • KIEAE Journal
    • /
    • 제13권5호
    • /
    • pp.67-77
    • /
    • 2013
  • Based on the increasing demand for a solution to reduce thermal load, extensive green roofs have great opportunity for application to existing roofs due to their light-weight and easy maintenance. The present study delivers data regarding thermal behavior and heat reduction potential in relation to vegetation coverage between green roof types. 1) In the hottest hour in a day, green roofs showed considerable potential to mitigate heat load in roof environments, which can be up to $10^{\circ}C$ difference. 2) Compared to conventional cement roofs, the extensive green roofs only have a slight potential to cool the air over green roofs. By statistical analysis of linear regression, green coverage has little to do with the reduction of air temperature; the cooling effect was proven only in nighttime. 3) Green roofs act as an insulating roof membrane, the inner substrate of green roofs remained cooler than cement roof surfaces in the daytime, but in the nighttime the green roofs generally were warmer than the cement roof surfaces. 4) The variable of vegetation coverage resulted in no significant difference in thermal behavior in the air, but had the greatest effect in keeping the substrate cool in the daytime. The high vegetation coverage also hindered the rapid cooling of the substrate in the nighttime, and therefore was warmer than other measured temperatures. In order to draw a clear conclusion to combat urban heat island effect with extensive green roofs, the experiment needs to be applied on a larger scale.

옥상슬래브 단열조건에 따른 옥상녹화의 열환경 조정효과 (The Control of Temperature of Green Roof System with the Roof Slab Insulation Method)

  • 여인애;조홍제;윤성환
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.869-872
    • /
    • 2008
  • On this study, the Control of Temperature is specified on the view of indoor comfort and building energy consumption. It is estimated by Dynamic heat load simulation which has the factors of insulation method and the soil thickness of the green roof system. The fact that the model which has no insulation has the greatest effect of dropping high temperature and the cooling load decrease is confirmed.

  • PDF

고형화된 식생기반재를 활용한 여름철 옥상녹화의 실내 온·습도 조절효과 연구 (The Research on the Indoor Temperature and Humidity Control of Green Roof by Solid Growing Medium in Summer)

  • 이현정;염동우;이규인
    • KIEAE Journal
    • /
    • 제15권3호
    • /
    • pp.93-99
    • /
    • 2015
  • Purpose: Various studies on the soil-based green roof systems have been conducted, and a lot of green roof systems were developed. A growing medium board is one of them which was developed for better application and maintenance, however the effect and performance of this material need to be verified. On this background, the purpose of this study is to prove cooling load reduction of green roof by monitoring experiment on the full-scale mock-ups. Method: To do this, Solid growing medium boards were installed on the mock-ups, and indoor temperature and humidity were monitored and analyzed. Result: As a results, the green roof with solid growing medium board were verified effective for controlling indoor temperature in summer.

기존 노후 건물의 단열 성능에 따른 옥상 녹화 시스템 설치시 에너지 성능 변화 (Energy Saving Effects of Green Roof in Exiting Buildings according to Different Insulation Levels)

  • 안경아;한승원;문현준
    • 한국생활환경학회지
    • /
    • 제21권6호
    • /
    • pp.959-964
    • /
    • 2014
  • Energy performance of building envelope components, including external walls, floors, roofs, windows and doors, is crutial for determining how much energy is required for heating and cooling in a building. Among various building technologies, a green roof system can be a good option for reducing heat gain and loss in new buildings as well as existing buildings for green remodeling. This paper evaluates the performance of green roof systems according to soil depth and Leaf Area Index (LAI) for existing buildings. It also attempts to quantify the energy saving effects on new and existing buildings with different insulation levels. Thermal performance of green roofs is mainly dependent on soil thickness and LAI. Installation of green roofs in deteriorated existing buildings can lead to improvements in roof insulation, due to the soil layer. An increase in soil depth leads to a decrease in heating load, regardless of conditions of vegetation on the green roof. Larger LAI values may reduce cooling loads in the cooling season. Installation of green roof in deteriorated existing buildings showed bigger energy saving effect in comparison to a case in new buildings. A simulation study showed that the installation of green roof systems in deteriorated existing buildings with low insulation levels, due to low thermal performance requirements when constructed, could improve the energy performance of the buildings similar or better to the peformance on new buildings with the most updated insulation standard. Thus, when remodeling a deteriorated building, green roofs could be a good option to meet the most recent energy requirements.

옥상녹화 및 인공지반녹화용 구리시트 방근재의 성능평가에 관한 연구 (A Study on the Performance Appraisal for Copper Sheet as Root Barrier Material Appling to Green Roof System)

  • 조일규;권시원;곽규성;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2007년도 춘계학술논문 발표대회
    • /
    • pp.5-8
    • /
    • 2007
  • Selection of proper root barrier as destination part of greening is very important in Root penetration resistance plan. To select proper root barrier, it need to understand composition of greening part, size, kind of plant, connection with waterproofing layer. In this point of view, we have establish greening on the roof or concrete structure, not been understand the structural mechanism. It means that we misunderstood about purpose of greening and using it. So, chosen materials and construction method was not proper for greening, it caused water leakage and decrease performance of concrete structure. Therefore, we examine the practical use of copper sheet considering environmental condition for green roof. Watertightness by water of greening part, root penetration resistance test by root penetration, bacteria resistance by must or bacteria in soil, chemical resistance by rain and chemical agent of fertilizer, and load resistance by soil depth, sire of plant. These suggested test methods could be referred as guideline to test in green roof system because of not exist any performance appraisal guideline or standard. Consequently, it should be analysis as technical and institutional subdividing test methods and it need to study constantly as varied angles.

  • PDF