• 제목/요약/키워드: Green Building Design

검색결과 387건 처리시간 0.03초

열쾌적성에 대한 가로수 수직적 구조의 영향 분석 (The Effects of Street Tree's Vertical Structures on Thermal Comfort)

  • 이수빈;최혜영;조현길;윤영조;길승호
    • 한국환경복원기술학회지
    • /
    • 제24권4호
    • /
    • pp.15-29
    • /
    • 2021
  • Urban green spaces offer a variety of benefits to living things and humans. However, existing green spaces have been reduced and fragmented due to urbanization, and there is a limit to creating new large green spaces in densely developed cities. Street trees have fewer restrictions on land use, which can be a measure to secure green areas in cities. In Korea, excessive pruning is being done on some street trees for reasons such as blocking of building signboards, contact with electric wires, and restrictions on sidewalk widths. Therefore, it is necessary to quantitatively understand the relationship between the benefits provided by street trees and their structures to come up with an efficient and systematic planning and management plan for urban street trees. In this study, we quantitatively analyzed the relationship between the thermal comfort improvement by the shades of street trees and the vertical structure, planting environment, and types of street trees. To calculate the thermal comfort felt by human body, we calculated UTCI (Universal Thermal Climate Index) of each street tree. For the vertical structure of street trees, we used Terrestrial LiDAR and the point clouds of street tree's crown was sliced vertically at 1m intervals. We conducted a multiple regression analysis on the thermal comfort improvement using the variables we obtained from fields. As a result, in the case of a street tree's vertical structure, the lager the volume of tree's crown located 3-4m (β=0.298, p<.05) and 6-7m (β=0.568, p<.001) above clear length, the better the cooling effect. In addition, the thermal comfort improvement was assessed to decrease as the DBH increased (β=-0.435, p<.001). In general, the crown diameter and DBH are positively correlated, with a cooling effect occurring as crown diameter increases. In this study, the opposite result was obtained due to the small number of trees measured, so additional research is needed by increasing the number of tree samples. In the case of the planting environment, the effect of improving thermal comfort was higher in the shaded area of trees planted to the south (β=-0.541, p<.001). Since unsystematic management of street trees can deteriorate the function of them, quantitative evaluations of the vertical structure of street trees are required, which can provide specific measures for planning and management of urban street trees with thermal comfort effect.

실측을 통한 공동주택 단지 내에서의 온열환경 및 거주자 쾌적감 평가에 관한 연구 (Assessment on Thermal Environment and Human Thermal Comfort in Residential Building Block through Field Measurement)

  • 임종연;황효근;송두삼;김태연
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.311-317
    • /
    • 2008
  • As outdoor environment become worse due to concentration of population in large cities, the importance of environmental control strategies such as the arrangement of green space or water space and ventilation paths, has been increasingly recognized. However, most of the studies focus on the assessment on outdoor thermal environment, few studies focus on the interrelationship between thermal environment in residential block and human thermal comfort. The aims of this study is to develop the outdoor planning method to reduce the heating/cooling load in an apartment unit or entire block by the sustainable approaches in outdoor environmental design. In this paper, on the basis of the prior studies, the effect of the outdoor thermal environment on human thermal comfort will be analysed.

  • PDF

노후 초등학교 건물에너지 절감을 위한 요소기술의 성능 비교 (Comparing Performances of Factors for Reducing Energy at Deteriorated Elementary School Buildings)

  • 이상춘;최영준;김현기;최율
    • KIEAE Journal
    • /
    • 제12권2호
    • /
    • pp.111-116
    • /
    • 2012
  • Faced with the international issue of environmental problems from global warming and energy consumption, the Korean Government has made many efforts on reducing energy and $CO_2$ emission under the motto of "Low-Carbon Green Growth". In order to reduce energy in the building sector, severe design standards and regulations on saving energy in new buildings have been established. Now, it is necessary to focus on deteriorated buildings where applications of energy saving designs and techniques have been insufficient, for maximizing energy saving in the building sector. Specially, it is very important to reduce energy through the remodeling process at deteriorated school buildings which were built over 20 years ago and sharply changed into the excessive energy consumption structure from new educational curricula. Thus, this paper examined the effects of potential factors to reduce energy at deteriorated elementary school buildings using the energy simulation on the Visual DOE 4.0 program. Among applied factors of insulations, southern louver, window's SHGC, indoor setup temperature, and system efficiency, all factors except window's SHGC turned out contribute to reduce energy at the deteriorated elementary school buildings, compared with the baseline energy performance.

Selection of Energy Conservation Measures for Building Energy Retrofit: a Comparison between Quasi-steady State and Dynamic Simulations in the Hands of Users

  • Kim, Sean Hay
    • KIEAE Journal
    • /
    • 제16권6호
    • /
    • pp.5-12
    • /
    • 2016
  • Purpose: Quasi-steady state simulations have played a pivoting role to expand the user group of simulation to design engineers and architects in Korea. Initially they are introduced in the market as a building energy performance rating tool. In domestic practice, however, quasi-steady state simulations seem to be regarded as a de facto simulation only available for energy retrofit. Selection of ECMs and economic feasibility analysis are being decided through these tools, which implies that running these tools has become a norm step of the Investment-grade Audit. Method: This study aims at identifying issues and problems with the current practice via test cases, analyzing the reasons and opportunities, and then eventually suggesting proper uses of quasi-steady state and dynamic simulations. Result: The functionality of quasi-steady state simulations is more optimized to the rating. If they are to used for energy retrofits, their off-the-shelf functions also need to be expanded for customization and detailed reports. Yet their roles may be limited only to the go/no go decision; because their algorithms are still weak at precisely estimating energy and load savings that are required for making investment decisions compared to detailed simulations.

공동주택용 하이브리드 지열 냉난방 시스템의 적용추진 전략 (A method for Application of Hybrid Geothermal Cooling-Heating System in Multi Family Apartment)

  • 박용부;박종배;김길태
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1447-1454
    • /
    • 2009
  • Currently, geothermal heat pump systems are being installed in new official and commercial building, welfare facilities, and school but there are a few cases for the housing heat sink in Korea. The reason is that there are no progressive taxes for the household electrical use, no actual output for the application of geothermal technology, high initial investment. For the overall use in multi family apartment such as the Green Home etc, technology development and building of the relevant research team need to be done through preliminary study. Core subjects for overall use include cooling heating load estimation for the multi family apartment, economical efficiency of the geothermal cooling and heating system, design and construction technology of the geothermal cooling and heating system for the multi family apartment, commercialization plan, and state of the art analysis. Selection of the detailed subjects with respect to core subject, driving schedule and commercialization plan, driving system, presentation of the utilization plan.

  • PDF

현장 타설 에너지파일을 적용한 지열 히트펌프 시스템의 성능 예측 (Performance Prediction of Geothermal Heat Pump(GHP) System Using Cast-in-Place Energy Piles)

  • 손병후;정경식;최항석
    • 설비공학논문집
    • /
    • 제25권1호
    • /
    • pp.28-36
    • /
    • 2013
  • The aim of this study is to evaluate the performance of the GHP system with 45 cast-in-place energy piles(CEP) for a commercial building. In order to demonstrate the feasibility of a sustainable performance of the system, transient simulations were conducted over 1-year and 20-year periods, respectively. The 1-year simulation results showed that the maximum and minimum temperatures of brine returning from the CEPs were $23.91^{\circ}C$ and $6.66^{\circ}C$, which were in a range of design target temperatures. In addition, after 20 years' operation, these returning temperatures decreased to $21.24^{\circ}C$ and $3.68^{\circ}C$, and finally reached to stable state. Annual average extraction heat of cast-in-place energy piles was 94.3 MWh and injection heat was 65.7 MWh from the 20 years of simulation results. Finally, it is expected this GHP system can operate with average heating SPF of more than 3.45 for long-term.

인공지반에서 토양하중에 따른 건축구조물 골조원가의 비교연구 (A Comparative Study on the Costs of Structural Materials Based on Different Types of Soil Load on Artificial Ground)

  • 김도경;황지환
    • 한국조경학회지
    • /
    • 제29권6호
    • /
    • pp.72-81
    • /
    • 2002
  • The purpose of this study is to determine the impact of the soil load for artificial ground on a building's structural expenses. Three types of soil - 100% soil, soil mixed with 50% perlite, and 100% artificial soil - were used for this study. A one story concrete steel building specific to each soil load was designed, and then, the cost of steel and concrete used for the design was estimated. As the result of this study, the structural expenses in the case of 5:5 mixed soil can be reduced about 17% compare with 100% soil. Using artificial soil, the structural expenses can be cut about 32% compare to 100% soil and about 12% less when 5:5 mixed soil is used. However, considering total expense which includes the structural expense and soil expense, the expense of 5:5 mixed soil have an increase 25% compared with 100% soil. In the artificial soil, the total expense is 45% more expensive than 100% soil and 17% higher when 5:5 mixed soil is used because of the high unit price of artificial soil. This study expected substantial savings in structural cost as the soil-load was lightened. But, savings were significantly reduced because the unit price of the artificial soil is much more expensive than the price of the natural one. Therefore, further research on methods of reducing the unit price of the artificial soil should be conducted in order to extend green space on to artificial ground.

EVALUATION OF SUSTAINABILITY OF CONSTRUCTION OPERATIONS: A FRAMEWORK FOR THE NEW ZEALAND CONSTRUCTION INDUSTRY

  • Jasper Mbachu
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.550-557
    • /
    • 2009
  • The concepts of 'sustainable development', 'sustainable construction' and 'green building' have been elevated to priority levels in all types and phases of construction project development worldwide. Consultants and contractors are now required to seriously consider the impact of their operations on the natural environment and the society, and consequently adopt sustainable construction practices in the development process to minimize and mitigate the negative impacts of their activities. However, existing sustainability rating tools apply to the design, post-construction and operation phases of a building; no tool exists for the rating of the performance of the contractor or the project team at the construction phase. This study aimed to develop a model for evaluating the sustainability of construction operations, drawing on the global best practice standards on sustainability. Practical applications of the model were carried out through case studies to evaluate the performances of fifteen construction firms in New Zealand. The developed model and the outcomes of the case studies were presented, including potential areas of weaknesses, strengths, constraints to achievement or adoption of sustainable construction practices and areas for improvement in the operations of the firms. The successful application of the developed model in practice shows its usefulness and ease of application. It is therefore recommended for adoption as a simple but effective system for measuring and reporting on sustainability performance or sustainability of construction operations of firms in New Zealand and elsewhere.

  • PDF

Lessons Learned during the Early Phases of a Modular Project: A Case Study of UNLV's Solar Decathlon 2020 Project

  • Choi, Jin Ouk;Lee, Seungtaek;Weber, Eric
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.543-550
    • /
    • 2022
  • The U.S. Department of Energy conducts the Solar Decathlon competition as a student-based achievement that encourages sustainable design with energy efficiency and solar energy technologies. In the 2020 competition, the University of Nevada, Las Vegas (UNLV) team designed, fabricated, and constructed a net-zero modular house that applies innovative and highly efficient building technologies. This paper focused on the lessons learned during the early phases of this ongoing modular project. The research methodology included obtaining feedback from key project participants using a well-structured questionnaire. The results showed that the major items/challenges in the project's planning phase included selecting the modular size, planning the construction system, planning the materials and procurement, estimating costs and duration, selecting a fabricator, collaboration and communication, safety, and planning module transportation. These findings will help modular practitioners and future Solar Decathlon competition participants better understand how and what factors they should consider most during the early phases through the lessons learned.

  • PDF

한랭지(몽골) 지열 히트펌프 시스템의 난방 성능 분석 (Heating Performance of Geothermal Heat Pump System Applied in Cold Climate Region(Mongolia))

  • 손병후;최재호;민경천
    • 설비공학논문집
    • /
    • 제27권1호
    • /
    • pp.31-38
    • /
    • 2015
  • Geothermal heat pump (GHP) systems have become an efficient alternative to conventional cooling and heating methods due to their higher energy using efficiency. These systems use the ground as a heat source in heating mode operation and a heat sink in cooling mode operation. The aim of this study is to evaluate the heating performance of the GHP system for a residential building ($420m^2$) in Ulaanbaatar, Mongolia. In order to demonstrate the feasibility of a sustainable performance of this system, we installed the water-to-water geothermal heat pump with ten vertical ground heat exchangers and measured operation parameters from October 19, 2013 to March 26, 2014. The results showed that the entering source temperature of brine from the ground heat exchangers was in a range of the design target temperature of $-10^{\circ}C$ for heating. For total values of the representative results, the ground heat exchangers extracted heat of 53.51 MWh from the ground. In addition, the GHP system supplied heat of 83.55 MWh to the building and consumed power of 30.27 MWh. Consequently, the average heating seasonal performance factor ($SPF_h$) of the overall system was evaluated to be 2.76 during the measurement period of the heating season.