• Title/Summary/Keyword: Green Area Ratio

Search Result 305, Processing Time 0.033 seconds

An Empirical Study on the Function and Effect of Urban Openspace - Focusing on Urban Roadside Trees - (도시녹지의 기능 및 효과에 대한 실증적 연구 - 도시 가로수를 중심으로 -)

  • 성현찬;민수현
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.2
    • /
    • pp.48-57
    • /
    • 2003
  • The objective of this study is to review and verify whether the functions and effect of roadside trees generally hewn in theory are actually realized in urban roads and how well they are performed if the function and effect are realized. The study was conducted with a focus on 3 functions and effects including roadside tree's urban landscape improvement function (green area visibility ratio), effect of introducing green area within a city, and urban green network building function. The major study results are as follows: First, the average green area visibility ratio of 41 study areas is currently about 25.90%. The green area visibility ratio of commercial area within downtown was lowest among 5 road types. It showed that it is possible to raise the average green area visibility ratio up to 32.49% through roadside tree management and additional plantation. Second, in a section between Paldal Mountain and Suwon City Hall where there is no forest fragments and parks at all, a green area of 4,826 roadside trees represented 2.4% of total area and served as the only linear green area. Third, an analysis of 15 cities in Kyonggi province showed that urban forests are concentrated in outskirts. The suey showed that because forest fragments and parks exist in a form of points in urban areas, roadside trees are the only green areas that link each other and build a network.

Analysis about Biotope Area Ratio of New Town Housing Complex in the Metropolitan Area of Korea (우리나라 수도권 신도시 주거단지의 생태면적률 분석)

  • Oh, Choong-Hyeon;Kim, Han-Soo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.4 s.117
    • /
    • pp.105-115
    • /
    • 2006
  • Biotope Area Ratio ($BFF; BiotopFl{\"{a}}chenFaktor$) was developed in Berlin, Germany in 1990s and introduced to Korea in 1999. It is the ratio of the uncovered soil areas which have the natural circulating capability compared to whole development areas. This study seeks for alternative ways to increase Biotope Area Ratio of residential areas in the metropolitan areas of Korea by investigation on new housing developments. The study investigates four new towns including Seoul Eunpyung new town, Yongin Kusung district, Goyang Pungdong and Juyeopdong districts and Hwasung Dongtan district. The Biotope Area Ratio of study sites is between 23.51 % and 40.69%. This result is not relevant to land use conditions, such as the building-ta-land ratio, natural ground green area ratio. This ratio satisfies the minimum requirements of City of Seoul, except 2 sites. Considering that the study sites are relatively low density land use areas compared to Seoul's average, thus, a higher standards is necessary for new town housing complexes. Because Biotope Area Ratio includes artificial ground green area ratio, Biotope Area Ratio is possible can be increased with decreased natural ground green area ratio. And so, when Biotope Area Ratio is applied to new town development, it must go side by side with a definite natural ground green area ratio.

Change of Green Space Arrangement and Planting Structure of Apartment Complexes in Seoul (서울시 아파트단지의 녹지배치 및 식재구조 변화 연구)

  • Lee, Dong-Wook;Lee, Kyong-Jae;Han, Bong-Ho;Jang, Jae-Hoon;Kim, Jong-Yup
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.4
    • /
    • pp.1-17
    • /
    • 2012
  • This study was carried out to propose the improved method by analyzing the change of green space arrangement and planting structure of apartment complexes in Seoul. 12 survey sites, which have obvious differences, were selected by reflecting the change of floor area ratio, underground parking place, and green space ratio. We divided the survey sites into four types that high green ratio(over 40%) apartment on natural ground, low green ratio(under 40%) apartment on natural ground, low green ratio(under 40%) apartment on artificial ground, and high green ratio(over 40%) apartment on artificial ground each period based on green space ratio and ground structure, plant crown volume, planting density, and planting pattern. The main factors of change of green space arrangement were green space ratio and ground structure. The Green space ratio was changed by the floor area ratio with constructing underground parking place and floor area ratio was adjusted by government policy and economic status. Average width of front green area has been changed from 10.0m in high green ratio apartment on natural ground for 3.5m, 2.7m, and 4.5m each period. The average width of the buffer green area has been changed from 15.0m in high green ratio apartment on natural ground of 7.7m, and 2.7m by extending parking place in the low green ratio apartment of artificial ground, so buffer green areas have been reduced and disconnected. So buffer green area in apartment complexes has been extended that the average width of the buffer green area was 3.8m caused by growing recognition of green since 2001. The ratio of native plant in canopy layer was increased from 45.1 % in the case of the high green ratio apartment of natural ground in 1980~1983 to 55.6%. Average plant crown volume increased from $1.27m^3/m^2$ in high green ratio apartment on natural ground for $3.47m^3/m^2$ in a low green ratio apartment on natural ground. But average plant crown volume is $0.27m^3/m^2$ in the high green ratio apartment of the artificial ground plant density of canopy layer was changed from 5 individuals per $100m^2$ to 14.5 individuals per $100m^2$. We should construct the buffer green area with natural ground and get the function of ecological and beautiful environment regarding to garden concept in case of front green area, width 4.5m. We should get the function of increasing green volume by multi-layer planting with shade woody species and flower woody species in case of back-side green area, width over 5.0m. We should get the function of covering the wall and increasing green landscape by planting with high woody species in case of side green area. We should apply the ecological planting technique to buffer green area and connect buffer green area to inner green area in apartment complexes.

Variation Profiles of Temperature by Green Area of Apartments in Gangnam, Seoul (서울 강남지역 아파트단지의 녹지면적에 따른 온도변화 모형)

  • 홍석환;이경재
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.1
    • /
    • pp.53-60
    • /
    • 2004
  • This study was carried out to investigate the effect of green area in apartment complexes to variation of temperature. The inside temperature of each site was estimated by analyzing Landsat ETM+ image data. The factors on variation of temperature were landcover type, building density, and Normalised Difference Vegetation Index(NDVI). The results of correlation between inside temperature of apartment complex and land cover type showed that the green area ratio had negative(-) correlation and impermeable pavement ratio had positive(+) correlation. Building-to-land ratio was not significant with inside temperature. A coefficient of correlation between the temperature value and the value of permeable pavement ratio added up green area ratio was higher than a coefficient of correlation between the temperature value and the value of permeable pavement ratio added up impermeable pavement ratio. Thus we may define that permeable pavement area decrease urban temperature with green area in apartment complex. Floor area ratio had no significant correlation with inside temperature. Inside temperature was decreased as the NDVI was increased. To establish the temperature distribution model in a development apartment complex, As the result of regression analysis between inside temperature as dependent variable and permeable pave ratio+green area ratio, green area ratio, building-to-land ratio and NDIT as independent variables, only permeable pavement ratio added up green area ratio of the independent variables was accepted fur regression equation in both two seasons and adjusted coefficient of determination was 41.4 on September, 2000 and 40.4 on June,2001.

Observational Study of Thermal Characteristics by Distribution Ratio of Green Area at Urban in Summer Season (하절기 관측을 통한 도시의 지역별 공간녹지분포율에 따른 열환경 특성 연구)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.8-16
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of thermal environment in the summer season by conducting the field observation of temperature, relative humidity, and globe temperature in some parts of the city. Observation point was divided to a densely populated area, a residential area, a green area, a waterfront green area and a suburban district by the distribution ratio of green area. In this study, the correlation between maximum temperature and globe temperature, study on index for intensity of the tropical night and the temperature distribution characteristic of measurement points by the distribution ratio of green area were analyzed. The results of this study are as follows. (1) The difference between temperature and globe temperature by the distribution ratio of green area is confirmed. The difference of nighttime is more clearly that of daytime. (2) The average temperature and globe temperature of the densely populated area($29.2^{\circ}C$, $33.7^{\circ}C$) are higher than that of the waterfront green area($27.9^{\circ}C$, $32.0^{\circ}C$) by $1.3^{\circ}C$ and $1.7^{\circ}C$, respectively. (3) The number of tropical nights has different days of tropical nights by the distribution ratio of green area of 17days for the Daegu weather station, 14days for adensely populated area, 14days for a residential area, 6days for a green area, 2days for a waterfront green area, and 2days for a suburban district. (4) The results of the slope of trend line for the effects of the temperature on globe temperature change and the intercept for the size of the impact of radiant energy gained around by the analysis of the correlation between the maximum temperature and globe temperature can be utilized objective evaluation index of the each point's artificial effects.

Development of calculating daily maximum ground surface temperature depending on fluctuations of impermeable and green area ratio by urban land cover types (도시 토지피복별 불투수면적률과 녹지면적률에 따른 지표면 일최고온도 변화량 산정방법)

  • Kim, Youngran;Hwang, Seonghwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.2
    • /
    • pp.163-174
    • /
    • 2021
  • Heatwaves are one of the most common phenomena originating from changes in the urban thermal environment. They are caused mainly by the evapotranspiration decrease of surface impermeable areas from increases in temperature and reflected heat, leading to a dry urban environment that can deteriorate aspects of everyday life. This study aimed to calculate daily maximum ground surface temperature affecting heatwaves, to quantify the effects of urban thermal environment control through water cycle restoration while validating its feasibility. The maximum surface temperature regression equation according to the impermeable area ratios of urban land cover types was derived. The estimated values from daily maximum ground surface temperature regression equation were compared with actual measured values to validate the calculation method's feasibility. The land cover classification and derivation of specific parameters were conducted by classifying land cover into buildings, roads, rivers, and lands. Detailed parameters were classified by the river area ratio, land impermeable area ratio, and green area ratio of each land-cover type, with the exception of the rivers, to derive the maximum surface temperature regression equation of each land cover type. The regression equation feasibility assessment showed that the estimated maximum surface temperature values were within the level of significance. The maximum surface temperature decreased by 0.0450℃ when the green area ratio increased by 1% and increased by 0.0321℃ when the impermeable area ratio increased by 1%. It was determined that the surface reduction effect through increases in the green area ratio was 29% higher than the increasing effect of surface temperature due to the impermeable land ratio.

Influence of Background Color and Substratum on the Blind-side Hypermelanosis in Starry Flounder Plathchthys stellatus (강도다리(Platichthys stellatus) 흑화 발현에 미치는 수조색깔 및 자갈기질의 영향)

  • KIM, Won-Jin
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.3
    • /
    • pp.841-847
    • /
    • 2016
  • To study the influence of background color and substratum on hypermelanosis of starry flounder, we compared the daily food intake (DFI), the feed efficiency (FE), the survival, the growth, the ratio of pigmented area on the blind side and the ratio of hypermelanic fish duplicately reared for 180 days in dark-green FRP aquarium (control), white FRP aquarium together with dark-green substratum. The ratio of pigmented area on the blind side was significantly higher at the dark-green group than at the white group. DFI, FE and growth were higher in the dark-green substratum. Pigmented area rate and ratio of hypermelanic fish were significantly higher at the dark green group than at the high dark-green substratum. The results suggest that bright tank color and substratum bottom could inhibit the hypermelanosis.

An Analysis on Building Energy Load along Core Position, Area Ratio and Orientation (코어 위치와 종횡비 및 방위에 따른 건물 에너지 부하 분석)

  • Kim, Jin-Ho;Park, Woo-Pyoung;Shin, Seung-Ho;Min, Joon-Ki;Kim, Dong-Hoon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.1
    • /
    • pp.15-19
    • /
    • 2013
  • In this Study, effect of core position, area ratio and orientation of building on energy load is examined using TRNSYS17. This parameters are major parameters of the conceptual design stage. Reference model is square floor plan($1,444m^2$), centered core and 29% core area ratio. As the results, without considering the building orientation, the annual heating load of central building with 1:1 area ratio is lowest ($10.33kWh/m^2yr$) and the annual cooling load of off-central building with 1:1 area ratio is lowest ($59.27kWh/m^2yr$). As area ratio is bigger, cooling load is lower and heating load is higher. But if we consider building orientation, orders of heating load and cooling load are changed for area ratio and orientation.

A Study on Green Space Management Planning Considering Urban Thermal Environment (도시 열환경을 고려한 녹지관리방안 수립 연구)

  • Joo, Chang-Hun;Kim, Jeong-Ho;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1349-1358
    • /
    • 2014
  • This study suggests plan of green space management based on the result of research apprehending the characteristic through sorting types of city thermal environment targeting summer which thermal pollution is the most serious. Considering anthropogenic heat, development level of wind road, thermal environment, as a result of types of thermal environment process, it is appeared 36 types, and 10 types is relevant of this research subject. Type I-1, size of building is large, artificial covering area is wide, and thermal load of anthropogenic heat is high, type II-1, development condition of wind road is incomplete as IIlevel, entering cold air is difficult and thermal management and improvement is needed area. Type III-1, scale is large and it is area of origin of cold air, development level of wind road is mostly favorable, type III-2 is revealed as smaller scale than III-1, and small area of origin of cold air. Type IV, anthropogenic heat is $81{\sim}150W/m^2$, average, but development function of wind road is very favorable. Type V, large area of thermal load and the origin of cold air are distributed as similar ratio, and level of development function of wind road is revealed as II level. According to standard of type classification of thermal environment, as a result of suggesting plan of green space management and biotops area ratio, type I-1 is buffer green space and waterway creation, goal biotops area ratio 35%, type II-1 afforestation in site and goal biotops area ratio 40%, type III-1, preservation plan to display the current function continuously is requested. Type IV suggests afforestation of stream current, and type V suggests quantitative increase of green space and goal biotops area ratio 45%.

A Study on the Evaluation of Bird Habitat Environment in Gyeongchun Line Forest Road (경춘선 숲길의 조류 서식환경 평가 연구)

  • Kim, Mi-Hu;Oh, Choong-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.6
    • /
    • pp.167-185
    • /
    • 2020
  • The purpose of this study is to prepare a plan for improving the bird habitat environment of Linear Park. To this end, after grasping the status of bird habitats on the Gyeongchun Line Forest Road, a representative linear park in Seoul, the habitat environment was evaluated and the correlation with the bird habitat was analyzed to derive a plan to improve the habitat environment. The results for correlation between diversity of birds and habitat environment were as follows. For the habitat environment inside the park, the order of positive correlation was in the order of park area (0.92), number of insect species (0.87), green area ratio (0.77), average width of linear park (0.74), Biotope area ratio (0.73), Immigration planted species (0.57). Also, for habitat environment outside the park, the bird diversity was influenced in the order of area outside the park (0.88), green area ratio of the park (0.76). Thus, in order to enhance the diversity of birds found in the park, the bird habitat environment inside the park needs to expand the park area, secure insect diversity, enhance green area ratio and ecological area ratio, expand the width of linear park, and lower the impermeable layer. For the bird habitat environment outside the park, wider area, green area ratio, and forest area of the park influenced on better bird habitation while lower ratio of road space and building-to-land ratio influenced on higher bird diversity. It is necessary to create an environment inhabitable for various species of birds and to make a healthy and pleasant city urban system for co-existence of human and living creatures.