• Title/Summary/Keyword: Greedy neighbor generation

Search Result 2, Processing Time 0.017 seconds

Greedy-based Neighbor Generation Methods of Local Search for the Traveling Salesman Problem

  • Hwang, Junha;Kim, Yongho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.69-76
    • /
    • 2022
  • The traveling salesman problem(TSP) is one of the most famous combinatorial optimization problem. So far, many metaheuristic search algorithms have been proposed to solve the problem, and one of them is local search. One of the very important factors in local search is neighbor generation method, and random-based neighbor generation methods such as inversion have been mainly used. This paper proposes 4 new greedy-based neighbor generation methods. Three of them are based on greedy insertion heuristic which insert selected cities one by one into the current best position. The other one is based on greedy rotation. The proposed methods are applied to first-choice hill-climbing search and simulated annealing which are representative local search algorithms. Through the experiment, we confirmed that the proposed greedy-based methods outperform the existing random-based methods. In addition, we confirmed that some greedy-based methods are superior to the existing local search methods.

A Combined Greedy Neighbor Generation Method of Local Search for the Traveling Salesman Problem

  • Yongho Kim;Junha Hwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.4
    • /
    • pp.1-8
    • /
    • 2024
  • The traveling salesman problem(TSP) is one of the well known combinatorial optimization problems. Local search has been used as a method to solve TSP. Greedy Random Insertion(GRI) is known as an effective neighbor generation method for local search. GRI selects some cities from the current solution randomly and inserts them one by one into the best position of the current partial solution considering only one city at a time. We first propose another greedy neighbor generation method which is named Full Greedy Insertion(FGI). FGI determines insertion location one by one like GRI, but considers all remaining cities at once. And then we propose a method to combine GRI with FGI, in which GRI or FGI is randomly selected and executed at each iteration in simulated annealing. According to the experimental results, FGI alone does not necessarily perform very well. However, we confirmed that the combined method outperforms the existing local search methods including GRI.