• 제목/요약/키워드: Gray-Level Co-Occurrence Matrix (GLCM)

검색결과 57건 처리시간 0.022초

임분 특성에 따른 고해상도 위성영상의 Texture 정보 분석 (Analysis of Texture Information of forest stand on High Resolution Satellite Imagery)

  • 김태근;이규성
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2003년도 공동 춘계학술대회 논문집
    • /
    • pp.145-150
    • /
    • 2003
  • 고해상도 위성영상을 이용한 산림의 분석은 기존의 중ㆍ저해상도 영상의 분석과 다른 접근이 필요하다. 본 연구는 임분 특성을 해석하는데 중요한 판독기준인 texture를 이용하여 영상 안에서 임상, 임목직경급, 수관울폐도 등에 따른 Texture 정보를 비교 분석하고자 한다. 울산 일부 산림지역을 대상으로 3개의 가시광선 밴드와 1개의 근적외선 밴드의 1m IKONOS 영상을 이용하여 Texture 정보를 추출하는데 일반적으로 사용되는 통계적인 방법 중에 하나인 GLCM(Gray-Level Co-occurrence matrix)을 통해 Texture 분석을 하였다. 또한 1996년도에 제작된 4차 임상도를 통해 추출된 산림 특성별 Texture 정보를 비교 검토하여 고해상도 위성영상을 활용하여 산림 특성을 해석하는데 최적의 Texture 정보를 제시하고자 하였다. 고해상도 영상에서 나타나는 임분의 특성별 질감정보는 임상, 직경, 임목밀도에 따라 다양하게 나타났다.

  • PDF

편각 차분에 의한 중첩 윤곽선과 질감을 이용한 영상 검색 (Image Retrieval using Interleaved Contour by Declination Difference and Texture)

  • 이정봉;김현종;박장춘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.767-770
    • /
    • 2002
  • 영상 검색의 수행 방법으로 사람의 시각 시스템의 특성을 기반으로 웨이블릿 변환의 고주파수 에너지와 형태학적 필터링을 이용하여 분할된 객체의 효과적인 특징 추출을 통한 계층적인 검색 시스템을 제안한다. 영상 고유의 특징을 얻기 위해 객체의 형태 정보와 질감(texture) 방향성 및 칼라 정보를 이용한다. 본 논문에서는 객체의 형태 정보의 추출을 위하여 사용자의 질의(query)영상에서 객체의 윤곽선의 편각차분 변동율에 의한 형태 특징 벡터를 추출하고 GLCM (Gray Level Co-occurrence Matrix)의 Contrast를 질감 특징으로 추출한다. 이들 두 특징을 이용하여 1차 분류 과정을 거치고 2차 검사에서는 보다 정확한 검색을 수행하기 위하여 1차로 분류된 후보영상들에 대하여 세부 정보인 칼라 정보를 기반으로 유사도를 측정함으로써 유사한 칼라와 형태를 가지는 영상뿐만 아니라 칼라가 다른 유사한 영상에도 효율적인 검색 성능을 보였다.

  • PDF

에지 정보에 의한 형태와 질감 및 칼라 정보를 이용한 영상 검색 (Image Retrieval Using Shape by Edge Feature and Texture and Color)

  • 이정봉;이광호;최철;조성민;박장춘
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(상)
    • /
    • pp.234-239
    • /
    • 2002
  • 영상 검색의 수행 방법으로 사람의 시각 시스템의 특성을 기반으로 효과적인 특징 추출 통한 계층적인 내용 기반 검색 시스템을 제안한다. 영상 고유의 특징을 얻기 위해 영상내에 존재하는 형태 정보와 질감 방향성 및 칼라 정보를 이용한다. 본 논문에서는 형태 정보의 추출을 위하여 사용자의 질의 영상에서 에지 특징 정보를 추출하고 부분 영역으로 분할된 영상에서 GLCM(Gray Level Co-occurrence Matrix)의 Contrast를 질감 특징으로 추출한다. 이들 두 특징을 이용하여 1차 분류 과정을 거치고 2차 검사에서는 보다 정확한 검색을 수행하기 위하여 1차로 분류된 후보영상들에 대하여 영상의 세부 정보인 칼라 정보를 기반으로 유사도를 측정함으로써 유사한 칼라와 형태를 가지는 영상뿐만 아니라 칼라가 다른 유사한 영상에도 효율적인 검색 성능을 보였다.

  • PDF

데이터 마이닝 결정나무를 이용한 포렌식 영상의 분류 (Forensic Image Classification using Data Mining Decision Tree)

  • 이강현
    • 전자공학회논문지
    • /
    • 제53권7호
    • /
    • pp.49-55
    • /
    • 2016
  • 디지털 포렌식 영상은 여러 가지 영상타입으로 위 변조되어 유통되는 심각한 문제가 대두되어 있다. 이러한 문제를 해결하기 위하여, 본 논문에서는 포렌식 영상의 분류 알고리즘을 제안한다. 제안된 알고리즘은 여러 가지 영상타입의 그레이 레벨 co-occurrence 행렬의 특성 중에서 콘트라스트와 에너지 그리고 영상의 엔트로피로 21-dim.의 특징벡터를 추출하고, 결정나무 플랜에서 분류학습을 위하여 PPCA를 이용하여 2-dim.으로 차원을 축소한다. 포렌식 영상의 분류 테스트는 영상 타입들의 전수조합에서 수행되었다. 실험을 통하여, TP (True Positive)와 FN (False Negative)을 검출하고, 제안된 알고리즘의 성능평가에서 민감도 (Sensitivity)와 1-특이도 (1-Specificity)의 AUROC (Area Under Receiver Operating Characteristic) 커브 면적은 0.9980으로 'Excellent(A)' 등급임을 확인하였다. 산출된 최소평균 판정에러 0.0179에서 분류할 포렌식 영상타입이 모두 포함되어 분류 효율성이 높다.

UAV와 다시기 위성영상을 이용한 붕괴건물 탐지 (Detection of Collapse Buildings Using UAV and Bitemporal Satellite Imagery)

  • 정세정;이기림;윤예린;이원희;한유경
    • 한국측량학회지
    • /
    • 제38권3호
    • /
    • pp.187-196
    • /
    • 2020
  • 본 연구에서는 UAV (Unmanned Aerial Vehicle)와 PlanetScope 위성영상을 함께 이용한 붕괴건물 탐지를 수행하여 지표면에 위치한 특정 객체 탐지에 있어 이종 센서의 활용 가능성을 제시하였다. 이를 위해 지난해 4월 산불 피해로 붕괴된 20여 채의 건물들이 있는 곳을 실험장소로 선정하였다. 붕괴건물 탐지를 위해 1차적으로 객체기반 분할을 수행한 고해상도의 UAV 영상을 이용해 ExG (Excess Green), GLCM (Gray-Level Co-occurrence Matrix) 그리고 DSM (Digital Surface Model)과 같은 객체들의 특징(feature) 정보를 생성한 후 이를 붕괴건물 후보군 탐지에 이용하였다. 이 과정에서 탐지정확도 향상을 위해 PlanetScope를 이용한 변화탐지 결과를 함께 사용하였으며 이를 시드 화소(seed pixles)로 사용하여 붕괴건물 후보군에서 오탐지된 영역과 과탐지된 영역을 수정 및 보완하였다. 최종적인 탐지 결과는 참조 영상을 통해 그 성능을 분석하였으며 UAV 영상만을 이용한 붕괴건물 후보군 탐지 결과와 UAV 그리고 PlanetScope 영상을 함께 사용했을 때의 결과의 정확도를 비교, 분석하였다. 그 결과 UAV 영상만을 이용해 탐지한 붕괴건물의 정확도는 0.4867 F1-score를 가지며 UAV와 PlanetScope 영상을 함께 사용했을 때의 결과는 0.8064 F1-score로 그 값이 상승하였다. Kappa 지수 또한 0.3674에서 0.8225로 향상된 것을 확인할 수 있었다.

딥러닝 모델 기반 위성영상 데이터세트 공간 해상도에 따른 수종분류 정확도 평가 (The Accuracy Assessment of Species Classification according to Spatial Resolution of Satellite Image Dataset Based on Deep Learning Model)

  • 박정묵;심우담;김경민;임중빈;이정수
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1407-1422
    • /
    • 2022
  • 본 연구는 분류(classification)기반 딥러닝 모델(deep learning model)인 Inception과 SENet을 결합한 SE-Inception을 활용하여 수종분류를 수행하고 분류정확도를 평가하였다. 데이터세트의 입력 이미지는 Worldview-3와 GeoEye-1 영상을 활용하였으며, 입력 이미지의 크기는 10 × 10 m, 30 × 30 m, 50 × 50 m로 분할하여 수종 분류정확도를 비교·평가하였다. 라벨(label)자료는 분할된 영상을 시각적으로 해석하여 5개의 수종(소나무, 잣나무, 낙엽송, 전나무, 참나무류)으로 구분한 후, 수동으로 라벨링 작업을 수행하였다. 데이터세트는 총 2,429개의 이미지를 구축하였으며, 그중약 85%는 학습자료로, 약 15%는 검증자료로 활용하였다. 딥러닝 모델을 활용한 수종분류 결과, Worldview-3 영상을 활용하였을 때 최대 약 78%의 전체 정확도를 달성하였으며, GeoEye-1영상을 활용할 때 최대 약 84%의 정확도를 보여 수종분류에 우수한 성능을 보였다. 특히, 참나무류는 입력 이미지크기에 관계없이 F1은 약 85% 이상의 높은 정확도를 보였으나, 소나무, 잣나무와 같이 분광특성이 유사한 수종은 오분류가 다수 발생하였다. 특정 수종에서 위성영상의 분광정보 만으로는 특징량 추출에 한계가 있을 수 있으며, 식생지수, Gray-Level Co-occurrence Matrix (GLCM) 등 다양한 패턴정보가 포함된 이미지를 활용한다면 분류 정확도를 개선할 수 있을 것으로 판단된다.

Estrus Detection in Sows Based on Texture Analysis of Pudendal Images and Neural Network Analysis

  • Seo, Kwang-Wook;Min, Byung-Ro;Kim, Dong-Woo;Fwa, Yoon-Il;Lee, Min-Young;Lee, Bong-Ki;Lee, Dae-Weon
    • Journal of Biosystems Engineering
    • /
    • 제37권4호
    • /
    • pp.271-278
    • /
    • 2012
  • Worldwide trends in animal welfare have resulted in an increased interest in individual management of sows housed in groups within hog barns. Estrus detection has been shown to be one of the greatest determinants of sow productivity. Purpose: We conducted this study to develop a method that can automatically detect the estrus state of a sow by selecting optimal texture parameters from images of a sow's pudendum and by optimizing the number of neurons in the hidden layer of an artificial neural network. Methods: Texture parameters were analyzed according to changes in a sow's pudendum in estrus such as mucus secretion and expansion. Of the texture parameters, eight gray level co-occurrence matrix (GLCM) parameters were used for image analysis. The image states were classified into ten grades for each GLCM parameter, and an artificial neural network was formed using the values for each grade as inputs to discriminate the estrus state of sows. The number of hidden layer neurons in the artificial neural network is an important parameter in neural network design. Therefore, we determined the optimal number of hidden layer units using a trial and error method while increasing the number of neurons. Results: Fifteen hidden layers were determined to be optimal for use in the artificial neural network designed in this study. Thirty images of 10 sows were used for learning, and then 30 different images of 10 sows were used for verification. Conclusions: For learning, the back propagation neural network (BPN) algorithm was used to successful estimate six texture parameters (homogeneity, angular second moment, energy, maximum probability, entropy, and GLCM correlation). Based on the verification results, homogeneity was determined to be the most important texture parameter, and resulted in an estrus detection rate of 70%.

효과적인 워터마킹 기법을 사용한 화재 비디오 영상의 저작권 보호 (Copyright Protection for Fire Video Images using an Effective Watermarking Method)

  • ;김종면
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권8호
    • /
    • pp.579-588
    • /
    • 2013
  • 본 논문에서는 화재 비디오 영상의 저작권 보호를 위해 효과적인 워터마킹 기법을 제안한다. 제안하는 워터마킹 기법은 명암도 동시발생 행렬과 퍼지 클러스터링 알고리즘을 이용하여 화재의 색상과 텍스처의 특징을 효율적으로 이용한다. 명암도 동시발생 행렬은 각 후보 화재 영상의 블록에 대한 에너지와 동질성을 계산하여 텍스처 데이터 셋을 만드는데 사용하며, 퍼지 클러스터링은 화재 비디오 영상의 색상 분할과 워터마커 삽입을 위한 텍스처 블록을 결정하기 위해 사용된다. 선택된 텍스처 블록은 이산 웨이블릿 변환을 통해 네 가지 서브밴드 (LL, LH, HL, HH)를 가지는 1차 레벨 웨이블릿 구조로 분해되고, 워터마커는 사람의 시각에 영향을 주지 않는 LH 영역에 삽입된다. 모의실험결과, 제안한 워터마킹 기법은 약 48 데시벨의 높은 첨부 신호 대 잡음 비와 1.6-2.0의 낮은 M-특이치 분해 값을 보였다. 또한, 제안한 워터마킹 기법은 노이즈 첨가, 필터링, 크로핑, JPEG 압축과 같은 영상처리 공격에서도 기존 이미지 워터마킹 알고리즘보다 정규화된 상관 값에서 높은 성능을 보였다.

Determination of Absorbed Dose for Gafchromic EBT3 Film Using Texture Analysis of Scanning Electron Microscopy Images: A Feasibility Study

  • So-Yeon Park
    • 한국의학물리학회지:의학물리
    • /
    • 제33권4호
    • /
    • pp.158-163
    • /
    • 2022
  • Purpose: We subjected scanning electron microscopic (SEM) images of the active layer of EBT3 film to texture analysis to determine the dose-response curve. Methods: Uncoated Gafchromic EBT3 films were prepared for direct surface SEM scanning. Absorbed doses of 0-20 Gy were delivered to the film's surface using a 6 MV TrueBeam STx photon beam. The film's surface was scanned using a SEM under 100× and 3,000× magnification. Four textural features (Homogeneity, Correlation, Contrast, and Energy) were calculated based on the gray level co-occurrence matrix (GLCM) using the SEM images corresponding to each dose. We used R-square to evaluate the linear relationship between delivered doses and textural features of the film's surface. Results: Correlation resulted in higher linearity and dose-response curve sensitivity than Homogeneity, Contrast, or Energy. The R-square value was 0.964 for correlation using 3,000× magnified SEM images with 9-pixel offsets. Dose verification was used to determine the difference between the prescribed and measured doses for 0, 5, 10, 15, and 20 Gy as 0.09, 1.96, -2.29, 0.17, and 0.08 Gy, respectively. Conclusions: Texture analysis can be used to accurately convert microscopic structural changes to the EBT3 film's surface into absorbed doses. Our proposed method is feasible and may improve the accuracy of film dosimetry used to protect patients from excess radiation exposure.

통계적 특성에 의한 객체 영상 검출방안 (The Object Image Detection Method using statistical properties)

  • 김지홍
    • 한국정보통신학회논문지
    • /
    • 제22권7호
    • /
    • pp.956-962
    • /
    • 2018
  • 본 논문은 영상에 포함된 객체 특징을 추출하기 위한 연구로서, 말레이시아 산림에서 드론으로 항공 촬영된 산림 영상사진을 이용하여 실제로 산림 속에 존재하는 나무를 파악하기 위한 방법을 기술한다. 일반적으로 회색조 영상특징 추출방법으로는 LBP 방식과 GLCM 방식, Gabor 필터 방식 등이 많이 사용되고 있다. 본 연구에서는 드론으로 촬영된 영상이므로 나뭇잎 질감이 매우 유사하기 때문에, 질감 자체보다는 표본으로 채취한 샘플들에 대한 통계적 특성을 이용한 객체 추출 방식을 제안한다. 이를 위하여 먼저 샘플 영상을 생성하고, 생성된 샘플영상과 원 영상간의 상호상관관계를 이용하여 객체를 검출한다. 각 샘플영상들에 대한 평균치 및 표준편차는 객체 샘플을 분간하고, 판단하기 위한 중요한 자료로 사용될 수 있으며, 또한 RGB 모델과 HSV 모델의 각 신호성분들을 분석하여 객체판단에 유용한 샘플 영상에 대한 통계값을 이용함으로서 객체 추출 확률을 높일 수 있다.