• Title/Summary/Keyword: Gray matter

Search Result 182, Processing Time 0.026 seconds

Studies of the Central Neural Pathways to the Hapgok(LI4) and Large Intestine (합곡과 대장의 중추신경로와의 연계성에 관한 연구)

  • Lee, Chang-Hyun;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.217-226
    • /
    • 2011
  • The aim of this study is to identify central neural pathway of neurons following the projection to the large intestine and Hapgok(LI4) which is Won acupoint of the large intestine meridian of hand-yangmyeong. In this experiment, Bartha's strain of pseudorabies virus was used to trace central localization of neurons related with large intestine and acupoint(LI4) which has been known to be able to regulate intestinal function. The animals were divided into 3 groups: group 1, injected into the large intestine; group 2, injected into the acupoint(LI4); group 3, injected into the acupoint(LI4) after severing the radial, ulnar, median nerve. After four days survival of rats, PRV labeled neurons were identified in the spinal cord and brain by immunohistochemical method. First-order PRV labeled neurons following the projection to large intestine, acupoint(LI4) and acupoint(LI4) after cutting nerve were found in the cervical, thoracic, lumbar and sacral spinal cord. Commonly labeled neurons were labeled in the lumbosacral spinal cord and thoracic spinal cord. They were found in lamina V- X, intermediomedial nucleus and dorsal column area. The area of sensory neurons projecting was L5-S2 spinal ganglia and T12-L1 spinal ganglia, respectively. In the brainstem, the neurons were labeled most evidently and consistently in the nucleus tractus solitarius, area postrema, dorsal motor nucleus of vagus nerve, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), C3 adrenalin cells, parapyramidal area(lateral paragigantocellular nucleus), locus coeruleus, subcoeruleus nucleus, A5 cell group, periaqueductal gray matter. In the diencephalon, PRV labeled neurons were marked mostly in the arcuate nucleus and median eminence. These results suggest that overlapped CNS locations are related with autonomic nuclei which regulate the functions of large intestine-related organs and it was revealed by tracing PRV labeled neurons projecting large intestine and related acupoint(LI4).

Understanding Neurogastroenterology From Neuroimaging Perspective: A Comprehensive Review of Functional and Structural Brain Imaging in Functional Gastrointestinal Disorders

  • Kano, Michiko;Dupont, Patrick;Aziz, Qasim;Fukudo, Shin
    • Journal of Neurogastroenterology and Motility
    • /
    • v.24 no.4
    • /
    • pp.512-527
    • /
    • 2018
  • This review provides a comprehensive overview of brain imaging studies of the brain-gut interaction in functional gastrointestinal disorders (FGIDs). Functional neuroimaging studies during gut stimulation have shown enhanced brain responses in regions related to sensory processing of the homeostatic condition of the gut (homeostatic afferent) and responses to salience stimuli (salience network), as well as increased and decreased brain activity in the emotional response areas and reduced activation in areas associated with the top-down modulation of visceral afferent signals. Altered central regulation of the endocrine and autonomic nervous responses, the key mediators of the brain-gut axis, has been demonstrated. Studies using resting-state functional magnetic resonance imaging reported abnormal local and global connectivity in the areas related to pain processing and the default mode network (a physiological baseline of brain activity at rest associated with self-awareness and memory) in FGIDs. Structural imaging with brain morphometry and diffusion imaging demonstrated altered gray- and white-matter structures in areas that also showed changes in functional imaging studies, although this requires replication. Molecular imaging by magnetic resonance spectroscopy and positron emission tomography in FGIDs remains relatively sparse. Progress using analytical methods such as machine learning algorithms may shift neuroimaging studies from brain mapping to predicting clinical outcomes. Because several factors contribute to the pathophysiology of FGIDs and because its population is quite heterogeneous, a new model is needed in future studies to assess the importance of the factors and brain functions that are responsible for an optimal homeostatic state.

Region of Interest Analysis for Standardized Uptake Value Ratio of 18F-fludeoxyglucose PET: Mild Cognitive Impairment and Alzheimer's Disease (경도인지장애와 알츠하이머병 환자의 18F-fludeoxyglucose PET 표준 섭취계수율에 대한 체적 및 피질 표면 기반 관심영역 분석)

  • Kim, Seonjik;Yoon, Uicheul
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.237-242
    • /
    • 2018
  • $^{18}F$-fludeoxyglucose PET (FDG-PET) can help finding an abnormal metabolic activity in brain. In this study, we evaluated an efficiency of volume- and cortical surface-based analysis which were used to determine whether standardized uptake value ratio (SUVR) of FDG-PET was different among Alzheimer's disease (AD), mild cognitive impairment (MCI), and healthy control (HC). Each PET image was rigidly co-registered to the corresponding magnetic resonance imaging (MRI) using mutual information. All voxels of the co-registered PET images were divided by the mean FDG uptake of the cerebellum cortex which was thresholded by partial volume effect (>0.9). Also, the SUVR value of each vertex was linearly interpolated from volumetric SUVR image which was thresholded by gray matter partial volume effect (>0.1). Lobar mean values were calculated from both volume- and cortical surface-based SUVRs. Statistical analysis was conducted to compare two measures for AD, MCI and HC groups. Even though the results of volume (SUVR_vol) and cortical surface-based SUVR (SUVR_surf) analysis were not significantly different from each other, the latter would be better for detecting group differences in SUVR of PET.

Clinical Feasibility of CT Brain Perfusion in a Dog with Sellar Region Tumor

  • Minji Kim;Gunha Hwang;Jeongmin Ryu;Jiwon Yoon;Moon Yeong Choi;Joong-Hyun Song;Tae Sung Hwang;Hee Chun Lee
    • Journal of Veterinary Clinics
    • /
    • v.41 no.3
    • /
    • pp.178-182
    • /
    • 2024
  • A 10-year-old spayed female Poodle was referred for blindness. On ophthalmic examination, loss of bilateral ocular pupil light reflex, visual loss, and right retinal detachment were confirmed at a local hospital. Magnetic resonance imaging (MRI) of the brain was performed to identify the optic nerve, optic chiasm, and brain disease. A sessile mass centered on the region of the optic chiasm was identified. The mass had iso- to hypointense on fluid-attenuated inversion recovery and T2-weighted images and mildly hypointense on T1-weighted images compared to the gray matter, with strong contrast enhancement. Peripheral edema was also identified. Computed tomography (CT) brain perfusion was performed to obtain additional hemodynamic information about the patient using a multislice CT. CT perfusion showed that the cerebral blood volume in the left temporal lobe region (13.4 ± 1.6 mL/100 g) was decreased relative to the contralateral region (19.9 ± 0.3 mL/100 g). The patient showed decreased appetite and consciousness one week after the CT scan with clinical symptoms worsened. The patient had seizure, tetraparesis, and loss of consciousness. It was euthanized one month later at the request of the owner. This report suggests that CT brain perfusion can provide additional hemodynamic information such as insufficient brain perfusion in sellar region tumor which can help assess potential complications and prognosis and plan treatment.

Cortical Iron Accumulation as an Imaging Marker for Neurodegeneration in Clinical Cognitive Impairment Spectrum: A Quantitative Susceptibility Mapping Study

  • Hyeong Woo Kim;Subin Lee;Jin Ho Yang;Yeonsil Moon;Jongho Lee;Won-Jin Moon
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1131-1141
    • /
    • 2023
  • Objective: Cortical iron deposition has recently been shown to occur in Alzheimer's disease (AD). In this study, we aimed to evaluate how cortical gray matter iron, measured using quantitative susceptibility mapping (QSM), differs in the clinical cognitive impairment spectrum. Materials and Methods: This retrospective study evaluated 73 participants (mean age ± standard deviation, 66.7 ± 7.6 years; 52 females and 21 males) with normal cognition (NC), 158 patients with mild cognitive impairment (MCI), and 48 patients with AD dementia. The participants underwent brain magnetic resonance imaging using a three-dimensional multi-dynamic multi-echo sequence on a 3-T scanner. We employed a deep neural network (QSMnet+) and used automatic segmentation software based on FreeSurfer v6.0 to extract anatomical labels and volumes of interest in the cortex. We used analysis of covariance to investigate the differences in susceptibility among the clinical diagnostic groups in each brain region. Multivariable linear regression analysis was performed to study the association between susceptibility values and cognitive scores including the Mini-Mental State Examination (MMSE). Results: Among the three groups, the frontal (P < 0.001), temporal (P = 0.004), parietal (P = 0.001), occipital (P < 0.001), and cingulate cortices (P < 0.001) showed a higher mean susceptibility in patients with MCI and AD than in NC subjects. In the combined MCI and AD group, the mean susceptibility in the cingulate cortex (β = -216.21, P = 0.019) and insular cortex (β = -276.65, P = 0.001) were significant independent predictors of MMSE scores after correcting for age, sex, education, regional volume, and APOE4 carrier status. Conclusion: Iron deposition in the cortex, as measured by QSMnet+, was higher in patients with AD and MCI than in NC participants. Iron deposition in the cingulate and insular cortices may be an early imaging marker of cognitive impairment related neurodegeneration.

An Assessment of the Accuracy of 3 Dimensional Acquisition in F-18 fluorodeoxyglucose Brain PET Imaging (3차원 데이터획득 뇌 FDG-PET의 정확도 평가)

  • Lee, Jeong-Rim;Choi, Yong;Kim, Sang-Eun;Lee, Kyung-Han;Kim, Byung-Tae;Choi, Chang-Woon;Lim, Sang-Moo;Hong, Seong-Wun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.3
    • /
    • pp.327-336
    • /
    • 1999
  • Purpose: To assess the quantitative accuracy and the clinical utility of 3D volumetric PET imaging with FDG in brain studies, 24 patients with various neurological disorders were studied. Materials and Methods: Each patient was injected with 370 MBq of 2-[$^{18}F$]fluoro-2-deoxy-D-glucose. After a 30 min uptake period, the patients were imaged for 30 min in 2 dimensional acquisition (2D) and subsequently for 10 min in 3 dimensional acquisition imaging (3D) using a GE $Advance^{TM}$ PET system, The scatter corrected 3D (3D SC) and non scatter-corrected 3D images were compared with 2D images by applying ROIs on gray and white matter, lesion and contralateral normal areas. Measured and calculated attenuation correction methods for emission images were compared to get the maximum advantage of high sensitivity of 3D acquisition. Results: When normalized to the contrast of 2D images, the contrasts of gray to white matter were $0.75{\pm}0.13$ (3D) and $0.95{\pm}0.12$ (3D SC). The contrasts of normal area to lesion were $0.83{\pm}0.05$ (3D) and $0.96{\pm}0.05$ (3D SC). Three nuclear medicine physicians judged 3D SC images to be superior to the 2D with regards to resolution and noise. Regional counts of calculated attenuation correction was not significantly different to that of measured attenuation correction. Conclusion: 3D PET images with the scatter correction in FDG brain studies provide quantitatively and qualitatively similar images to 2D and can be utilized in a routine clinical setting to reduce scanning time and patient motion artifacts.

  • PDF

Experimental Studies on Lead Toxicity in Domestic II. Histopathology (고양이의 납중독에 관한 실험적 연구 2. 조직병리학적 소견)

  • Hong Soon-Ho;Han Hong Ryul
    • Journal of Veterinary Clinics
    • /
    • v.11 no.1
    • /
    • pp.485-505
    • /
    • 1994
  • Lead toxicity was evaluated in forty-five cats on a balanced diet, treated with 0(control), 10, 100(low), 1, 000, 2, 000 and 4, 000(high)ppm of lead acetate orally on a body weight basis. The objectives were to describe the gross and histopathologic changes and to demonstrate what tissue lead concentrations correlate with the known dosages of lead. In subclinical lead toxicity, greater than 80% of the absorbed lead was deposited in the bone, whereas in more acute lead toxicity, 42% of absorbed lead was deposited in the bone and 36% and 20% of absorbed lead was deposited in the kidneys and in the liver, respectively. No gross lesions were found in the nervous system. Yellow-brown colored livers appear to be associated with lead toxicity. Neuronal necrosis in the cerebrum was the most predominant histopathologic finding. Astrocytic proliferation in the cerebral gray matter was observed in 1 high dose cat. Gliosis was noted in the cerebral cortex of 6 high dose cats. Two high dose cats had demyelination in the deepest layer of the cortical gray matter of the cerebrum. Extravasation of red cells and cavitation around the vessels were found in the cerebrum of 1 high dose cat. Six high dose cats had degeneration of Purkinje cells in the cerebellum. The microscopic findings in the peripheral nerves were ambiguous. In more acute toxicity, the cats had lead inclusions in the epithelial cells of proximal tubules of the kidneys of 7 cats and hepatocytes of the liver of S cats. These inclusions could be seen wlth H&E, but were more prominent with orcein staining. Two high dose cats had granulomas and connective tissue hyperplasia between tubules of the kidneys. Periportal hepatocyte vacuolization was observed in the liver of 22 cats. Vacuolization of seminiferous tubules and a reduced number of spermatogonia(indicative of reduced spermatogenesis) were found in the testis of 5 treated cats. Cystic ovaries were observed in 3 high dose cats and poor development of oogonia was found in 2 cats. The diagnosis of lead toxicity in cats can be suspected on the basis of the histopathologic lesions described, and can be of value in contributing to a diagnosis. A reliable diagnosis of lead poisoning can be helped utilizing tissue lead analysis(post molten)

  • PDF

The Study about Application of LEAP Collimator at Brain Diamox Perfusion Tomography Applied Flash 3D Reconstruction: One Day Subtraction Method (Flash 3D 재구성을 적용한 뇌 혈류 부하 단층 촬영 시 LEAP 검출기의 적용에 관한 연구: One Day Subtraction Method)

  • Choi, Jong-Sook;Jung, Woo-Young;Ryu, Jae-Kwang
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.102-109
    • /
    • 2009
  • Purpose: Flash 3D (pixon(R) method; 3D OSEM) was developed as a software program to shorten exam time and improve image quality through reconstruction, it is an image processing method that usefully be applied to nuclear medicine tomography. If perfoming brain diamox perfusion scan by reconstructing subtracted images by Flash 3D with shortened image acquisition time, there was a problem that SNR of subtracted image is lower than basal image. To increase SNR of subtracted image, we use LEAP collimators, and we emphasized on sensitivity of vessel dilatation than resolution of brain vessel. In this study, our purpose is to confirm possibility of application of LEAP collimators at brain diamox perfusion tomography, identify proper reconstruction factors by using Flash 3D. Materials and methods: (1) The evaluation of phantom: We used Hoffman 3D Brain Phantom with $^{99m}Tc$. We obtained images by LEAP and LEHR collimators (diamox image) and after 6 hours (the half life of $^{99m}Tc$: 6 hours), we use obtained second image (basal image) by same method. Also, we acquired SNR and ratio of white matters/gray matters of each basal image and subtracted image. (2) The evaluation of patient's image: We quantitatively analyzed patients who were examined by LEAP collimators then was classified as a normal group and who were examined by LEHR collimators then was classified as a normal group from 2008. 05 to 2009. 01. We evaluate the results from phantom by substituting factors. We used one-day protocol and injected $^{99m}Tc$-ECD 925 MBq at both basal image acquisition and diamox image acquisition. Results: (1) The evaluation of phantom: After measuring counts from each detector, at basal image 41~46 kcount, stress image 79~90 kcount, subtraction image 40~47 kcount were detected. LEAP was about 102~113 kcount at basal image, 188~210 kcount at stress image and 94~103 at subtraction image kcount were detected. The SNR of LEHR subtraction image was decreased than LEHR basal image about 37%, the SNR of LEAP subtraction image was decreased than LEAP basal image about 17%. The ratio of gray matter versus white matter is 2.2:1 at LEHR basal image and 1.9:1 at subtraction, and at LEAP basal image was 2.4:1 and subtraction image was 2:1. (2) The evaluation of patient's image: the counts acquired by LEHR collimators are about 40~60 kcounts at basal image, and 80~100 kcount at stress image. It was proper to set FWHM as 7 mm at basal and stress image and 11mm at subtraction image. LEAP was about 80~100 kcount at basal image and 180~200 kcount at stress image. LEAP images could reduce blurring by setting FWHM as 5 mm at basal and stress images and 7 mm at subtraction image. At basal and stress image, LEHR image was superior than LEAP image. But in case of subtraction image like a phantom experiment, it showed rough image because SNR of LEHR image was decreased. On the other hand, in case of subtraction LEAP image was better than LEHR image in SNR and sensitivity. In all LEHR and LEAP collimator images, proper subset and iteration frequency was 8 times. Conclusions: We could archive more clear and high SNR subtraction image by using proper filter with LEAP collimator. In case of applying one day protocol and reconstructing by Flash 3D, we could consider application of LEAP collimator to acquire better subtraction image.

  • PDF

Morphological Studies of the Central Neural Pathways to the Pancreas, Sanyinjiao(Sp6) and Yinlingquan(Sp9) using Pseudorabies Virus (Pseudorabies virus를 이용한 췌장과 삼음교(三陰交)(Sp6), 음릉천(陰陵泉)(Sp9)에서 투사되는 중추 신경로에 관한 형태학적 연구)

  • Kim, Cheol-Han;Lee, Su-Kyung;Yeom, Seung-Ryong;Kwon, Young-Dal;Song, Yung-Sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.1
    • /
    • pp.23-38
    • /
    • 2009
  • Objectives : The purpose of this morphological studies was to investigate the relations between Sanyinjiao(Sp6), Yinlingquan(Sp9) and pancreas of rats using peudorabies virus(PRV). Methods : We observed labeled neurons following the injection of PRV, Bartha strain, into the Sanyinjiao(Sp6), Yinlingquan(Sp9) and pancreas of rats. After survival times of 4 days following the injection of PRV, the rats were perfused, and their spinal ganglia, spinal cord and brain stem were frozen sectioned($35{\mu}m$). These sections were strained by PRV immunohistchemical staining methods and observed with light microscope. Results : The results were as follows. 1. In the spinal ganglia, the overlap areas of PRV labeled neurons projecting to Sanyinjiao(Sp6), Yinlingquan(Sp9) and pancreas were observed in T10-13 dorsal root ganglia. 2. In the spinal cord, the overlap areas of PRV labeled neurons projecting to Sanyinjiao(Sp6), Yinlingquan(Sp9) and pancreas were lamina I, IV, V, VII, IX, X, intermediolateral nucleus(IML), intermediomedial nucleus(IMM) in thoracic segments. In lumbar segments, the overlap areas of PRV labeled neuron were lamina I, IV, V, VI, IX, X and IMM. In sacral segments, the overlap areas of PRV labeled neuron were lamina I, IV, V, VI, VII, IX, X. 3. In the brain, the overlap areas of PRV labeled neurons projecting to Sanyinjiao(Sp6), Yinlingquan(Sp9) and pancreas were area postrema, nucleus tractus solitarius, caudoventrolateral reticular nu., medullary reticular nu., lateral paragigantocellular nu., C3 adrenalin cells, gigantocellular nu., raphe pallidus nu., raphe obscurus nu., ambiguus nu., raphe magnus nu., pontine reticular formation, A5 cell group, subcoeruleus nu., locus coeruleus, Barringnton's nu., $K{\ddot{o}}lliker$-Fuse nu., dorsal raphe nu., Edinger-Westphal nu., central gray matter, perifornical nu., dorsomedial hypothalamic nu., arcuate nu., lateral hypothalamic nu., paraventricular hypothalamic nu., hindlimb area. Conclusions : In conclusion, these results suggest that the interrelationship of meridian(spleen meridian), acupoints(Sp6 and Sp9) and viscera(pancreas) may be related the central autonomic centers.

SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY FINDINGS IN ATTENTION DEFICIT- HYPERACTIVITY DISORDER (주의력결핍 ${\cdot}$ 과잉운동장애의 단일광자방출 전산화단층촬영 소견에 관한 연구)

  • Cho, Soo-Churl;Lee, Myung-Chul;Moon, Dae-Hyuk
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.1 no.1
    • /
    • pp.27-39
    • /
    • 1990
  • The neural mechanisms involved in attention deficit hyperactivity disorder are largely unknown. In order to investigate the neuroanatomical lesions of attention deficit hyperactivity disorders and their relationships with psychopathology, Single Photon Emission Computed Tomography(SPECT) using HMPAO was performed in 46 ADHDS and Yale Children's Inventory(YCI), Conners Parent Questionaire and DSM-III-R Questionaire for Disruptive Behavior Disorder were used to assess the psychopathology of ADHDS The results are summarized as follows; 1) 30.4% (14/46) of this series revealed decreased perfusion In SPECT. 2) Regions of hypoperfusion were seen in cerebral cortex(17.4%, 8/46), thalamus(13.0%, 6/46), deep gray matter(8.7%, 4/46), basal ganglia(6.5%, 3/46) and cerebellum(2.2%, 1/ 46). 3) The mean scores of the total YCI revealed significant difference between the two groups(SPECT abnormal versus normal group), and among the subscales, hyperactivity, language and fine-motor subscales showed significant differences between the two groups. Although the relationship between the abnormal findings and specific symptom clusters of ADHDS remains unclear, we can suggest that these abnormal findings could be associated with ADHD, and based on these findings, the ADHDS can be subclassified into two groups. This study can be said to reinforce the current conception of heterogeneity of ADHD.

  • PDF