• Title/Summary/Keyword: Gray Level Co-occurrence Matrix (GLCM)

Search Result 57, Processing Time 0.028 seconds

A Performance Improvement of GLCM Based on Nonuniform Quantization Method (비균일 양자화 기법에 기반을 둔 GLCM의 성능개선)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.133-138
    • /
    • 2015
  • This paper presents a performance improvement of gray level co-occurrence matrix(GLCM) based on the nonuniform quantization, which is generally used to analyze the texture of images. The nonuniform quantization is given by Lloyd algorithm of recursive technique by minimizing the mean square error. The nonlinear intensity levels by performing nonuniformly the quantization of image have been used to decrease the dimension of GLCM, that is applied to reduce the computation loads as a results of generating the GLCM and calculating the texture parameters by using GLCM. The proposed method has been applied to 30 images of $120{\times}120$ pixels with 256-gray level for analyzing the texture by calculating the 6 parameters, such as angular second moment, contrast, variance, entropy, correlation, inverse difference moment. The experimental results show that the proposed method has a superior computation time and memory to the conventional 256-level GLCM method without performing the quantization. Especially, 16-gray level by using the nonuniform quantization has the superior performance for analyzing textures to another levels of 48, 32, 12, and 8 levels.

Texture analysis of Thyroid Nodules in Ultrasound Image for Computer Aided Diagnostic system (컴퓨터 보조진단을 위한 초음파 영상에서 갑상선 결절의 텍스쳐 분석)

  • Park, Byung eun;Jang, Won Seuk;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • According to living environment, the number of deaths due to thyroid diseases increased. In this paper, we proposed an algorithm for recognizing a thyroid detection using texture analysis based on shape, gray level co-occurrence matrix and gray level run length matrix. First of all, we segmented the region of interest (ROI) using active contour model algorithm. Then, we applied a total of 18 features (5 first order descriptors, 10 Gray level co-occurrence matrix features(GLCM), 2 Gray level run length matrix features and shape feature) to each thyroid region of interest. The extracted features are used as statistical analysis. Our results show that first order statistics (Skewness, Entropy, Energy, Smoothness), GLCM (Correlation, Contrast, Energy, Entropy, Difference variance, Difference Entropy, Homogeneity, Maximum Probability, Sum average, Sum entropy), GLRLM features and shape feature helped to distinguish thyroid benign and malignant. This algorithm will be helpful to diagnose of thyroid nodule on ultrasound images.

Detection of Cropland in Reservoir Area by Using Supervised Classification of UAV Imagery Based on GLCM (GLCM 기반 UAV 영상의 감독분류를 이용한 저수구역 내 농경지 탐지)

  • Kim, Gyu Mun;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.433-442
    • /
    • 2018
  • The reservoir area is defined as the area surrounded by the planned flood level of the dam or the land under the planned flood level of the dam. In this study, supervised classification based on RF (Random Forest), which is a representative machine learning technique, was performed to detect cropland in the reservoir area. In order to classify the cropland in the reservoir area efficiently, the GLCM (Gray Level Co-occurrence Matrix), which is a representative technique to quantify texture information, NDWI (Normalized Difference Water Index) and NDVI (Normalized Difference Vegetation Index) were utilized as additional features during classification process. In particular, we analyzed the effect of texture information according to window size for generating GLCM, and suggested a methodology for detecting croplands in the reservoir area. In the experimental result, the classification result showed that cropland in the reservoir area could be detected by the multispectral, NDVI, NDWI and GLCM images of UAV, efficiently. Especially, the window size of GLCM was an important parameter to increase the classification accuracy.

Gray-Level Co-Occurrence Matrix(GLCM) based vehicle type classification method (GLCM 특징정보 기반의 자동차 종류별 분류 방안)

  • Yoon, Jong-Il;Kim, Jong-Bae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.410-413
    • /
    • 2011
  • 본 논문에서는 도로 영상에서 검출된 자동차 영상을 종류별 분류를 위해 효과적인 질감 특징정보 기반의 자동차 종류별 분류 방안을 제안한다. 제안한 연구에서는 운전자의 안전운전지원을 위해 도로상에서 검출된 자동차 영역과 자신의 차량과 거리를 추정하기 위해 검출된 자동차의 종류를 인식할 필요가 있다. 즉, 인식된 자동차의 종류에 따라 차량 간 거리를 추정에 필요한 파라미터로 사용할 수 있기 때문이다. 따라서 본 연구에서는 검출된 자동차 영상들로부터 GLCM(gray-level co-occurrence matrix)의 7가지의 특징정보들을 추출하고 SVM을 사용하여 학습 한 후 자동차의 종류(승용, 화물, 버스)를 분류하는 방법을 제안한다. GLCM은 영상이 가진 질감 정보를 효율적으로 분석함으로써 영역의 밝기 변화 정도, 거침 정도, 픽셀 분포 정도 등을 표현하기 때문에 영상내의 포함된 영역을 분류하는데 효과적이다. 제안한 방법을 실제 자동차 규모별 분류에 적용한 결과 약 83%의 분류 성공률을 제시하였다.

Image Retrieval Using Color feature and GLCM and Direction in Wavelet Transform Domain (Wavelet 변환 영역에서 칼라 정보와 GLCM 및 방향성을 이용한 영상 검색)

  • 이정봉
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.585-589
    • /
    • 2002
  • In this paper, hierarchical retrieval system based on efficient feature extraction is proposed. In order to retrieval the image with robustness for geometrical transformation such as translation, scaling, and rotation. After performing the 2-level wavelet transform on image, We extract moment in low-level subband which was subdivided into subimages and texture feature, contrast of GLCM(Gray Level Co-occurrence Matrix). At first we retrieve the candidate images in database by the ones of image. To perform a more accurate image retrieval, the edge information on the high-level subband was subdivided horizontally, vertically and diagonally. And then, the energy rate of edge per direction was determined and used to compare the energy rate of edge between images for higher accuracy.

  • PDF

Color Component Analysis For Image Retrieval (이미지 검색을 위한 색상 성분 분석)

  • Choi, Young-Kwan;Choi, Chul;Park, Jang-Chun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.403-410
    • /
    • 2004
  • Recently, studies of image analysis, as the preprocessing stage for medical image analysis or image retrieval, are actively carried out. This paper intends to propose a way of utilizing color components for image retrieval. For image retrieval, it is based on color components, and for analysis of color, CLCM (Color Level Co-occurrence Matrix) and statistical techniques are used. CLCM proposed in this paper is to project color components on 3D space through geometric rotate transform and then, to interpret distribution that is made from the spatial relationship. CLCM is 2D histogram that is made in color model, which is created through geometric rotate transform of a color model. In order to analyze it, a statistical technique is used. Like CLCM, GLCM (Gray Level Co-occurrence Matrix)[1] and Invariant Moment [2,3] use 2D distribution chart, which use basic statistical techniques in order to interpret 2D data. However, even though GLCM and Invariant Moment are optimized in each domain, it is impossible to perfectly interpret irregular data available on the spatial coordinates. That is, GLCM and Invariant Moment use only the basic statistical techniques so reliability of the extracted features is low. In order to interpret the spatial relationship and weight of data, this study has used Principal Component Analysis [4,5] that is used in multivariate statistics. In order to increase accuracy of data, it has proposed a way to project color components on 3D space, to rotate it and then, to extract features of data from all angles.

Analysis of Malignant Tumor Using Texture Characteristics in Breast Ultrasonography (유방 초음파 영상에서 질감 특성을 이용한 악성종양 분석)

  • Cho, Jin-Young;Ye, Soo-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.70-77
    • /
    • 2019
  • Breast ultrasound readings are very important to diagnose early breast cancer. In Ultrasonic inspection, it shows a significant difference in image quality depending on the ultrasonic equipment, and there is a large difference in diagnosis depending on the experience and skill of the inspector. Therefore, objective criteria are needed for accurate diagnosis and treatment. In this study, we analyzed texture characteristics by applying GLCM (Gray Level Co-occurrence Matrix) algorithm and extracted characteristic parameters and diagnosed breast cancer using neural network classifier. Breast ultrasound images were classified into normal, benign and malignant tumors and six texture parameters were extracted. Fourteen cases of normal, malignant and benign tumor diagnosed by mammography were studied by using the extracted six parameters and learning by multi - layer perceptron neural network back propagation learning method. As a result of classification using 51 normal images, 62 benign tumor images, and 74 malignant tumor images of the learned model, the classification rate was 95.2%.

Analysis of characteristics for computer-aided diagnosis of breast ultrasound imaging (유방 초음파 영상의 컴퓨터 보조 진단을 위한 특성 분석)

  • Eum, Sang-hee;Nam, Jae-hyun;Ye, soo-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.307-310
    • /
    • 2021
  • In the recent years, studies using Computer-Aided Diagnostics(CAD) have been actively conducted, such as signal and image processing technology using breast ultrasound images, automatic image optimization technology, and automatic detection and classification of breast masses. As computer diagnostic technology is developed, it is expected that early detection of cancer will proceed accurately and quickly, reducing health insurance and test ice for patients, and eliminating anxiety about biopsy. In this paper, a quantitative analysis of tumors was conducted in ultrasound images using a gray level co-occurrence matrix(GLCM) to experiment with the possibility of use for computer assistance diagnosis.

  • PDF

Fire Detection Using Multi-Channel Information and Gray Level Co-occurrence Matrix Image Features

  • Jun, Jae-Hyun;Kim, Min-Jun;Jang, Yong-Suk;Kim, Sung-Ho
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.590-598
    • /
    • 2017
  • Recently, there has been an increase in the number of hazardous events, such as fire accidents. Monitoring systems that rely on human resources depend on people; hence, the performance of the system can be degraded when human operators are fatigued or tensed. It is easy to use fire alarm boxes; however, these are frequently activated by external factors such as temperature and humidity. We propose an approach to fire detection using an image processing technique. In this paper, we propose a fire detection method using multichannel information and gray level co-occurrence matrix (GLCM) image features. Multi-channels consist of RGB, YCbCr, and HSV color spaces. The flame color and smoke texture information are used to detect the flames and smoke, respectively. The experimental results show that the proposed method performs better than the previous method in terms of accuracy of fire detection.