Water body extraction based on backscatter information is an essential process to analyze floodaffected areas from Synthetic Aperture Radar (SAR) image. Water body in SAR image tends to have low backscatter values due to homogeneous surface of water, while non-water body has higher backscatter values than water body. Non-water body, however, may also have low backscatter values in high resolution SAR image such as Kompsat-5 image, depending on surface characteristic of the ground. The objective of this paper is to present a method to increase backscatter contrast between water body and non-water body and also to remove efficiently misclassified pixels beyond true water body area. We create an entropy image using a Gray Level Co-occurrence Matrix (GLCM) and classify the entropy image into water body and non-water body pixels by thresholding of the entropy image. In order to reduce the effect of threshold value, we also propose Water Body Texture Index (WBTI), which measures simultaneously the occurrence of repeated water body pixel pair and the uniformity of water body in the binary entropy image. The proposed method produced high overall accuracy of 99.00% and Kappa coefficient of 90.38% in water body extraction using Kompsat-5 image. The accuracy analysis indicates that the proposed WBTI method is less affected by the choice of threshold value and successfully maintains high overall accuracy and Kappa coefficient in wide threshold range.
Proceedings of the Korea Information Processing Society Conference
/
2004.05a
/
pp.737-740
/
2004
본 논문에서는 차종 식별을 위해 차량 영상의 질감 특징을 사용하였다. 차량의 질감 특징 정보를 얻기 위한 관심영역으로 라디에이터 그릴 부분을 선택하였다. 추출된 관심영역으로부터 GLCM(Gray Level Co-occurrence Matrix)을 사용하여 질감 특징 값을 추출하였고, 그 특징 값들을 입력으로 취하는 3층의 신경회로망을 구성한 후 역전파 학습 알고리즘을 사용하여 학습을 시켜서 차종 식별을 시도하였다.
Crop classification is very important for estimating crop yield and figuring out accurate cultivation area. The purpose of this study is to classify crops harvested in fall in Idam-ri, Goesan-gun, Chungcheongbuk-do by using unmanned aerial vehicle (UAV) images and support vector machine (SVM) model. The study proceeded in the order of image acquisition, variable extraction, model building, and evaluation. First, RGB and multispectral image were acquired on September 13, 2021. Independent variables which were applied to Farm-Map, consisted gray level co-occurrence matrix (GLCM)-based texture characteristics by using RGB images, and multispectral reflectance data. The crop classification model was built using texture characteristics and reflectance data, and finally, accuracy evaluation was performed using the error matrix. As a result of the study, the classification model consisted of four types to compare the classification accuracy according to the combination of independent variables. The result of four types of model analysis, recursive feature elimination (RFE) model showed the highest accuracy with an overall accuracy (OA) of 88.64%, Kappa coefficient of 0.84. UAV-based RGB and multispectral images effectively classified cabbage, rice and soybean when the SVM model was applied. The results of this study provided capacity usefully in classifying crops using single-period images. These technologies are expected to improve the accuracy and efficiency of crop cultivation area surveys by supplementing additional data learning, and to provide basic data for estimating crop yields.
Mammogram images are sensitive in nature and even a minor change in the environment affects the quality of the images. Due to the lack of expert radiologists, it is difficult to interpret the mammogram images. In this paper an algorithm is proposed for a computer-aided diagnosis system, which is based on the wavelet based adaptive sigmoid function. The cascade feed-forward back propagation technique has been used for training and testing purposes. Due to the poor contrast in digital mammogram images it is difficult to process the images directly. Thus, the images were first processed using the wavelet based adaptive sigmoid function and then the suspicious regions were selected to extract the features. A combination of texture features and gray-level co-occurrence matrix features were extracted and used for training and testing purposes. The system was trained with 150 images, while a total 100 mammogram images were used for testing. A classification accuracy of more than 95% was obtained with our proposed method.
International Journal of Internet, Broadcasting and Communication
/
v.14
no.4
/
pp.173-180
/
2022
In the naked eye observation, the health of livestock can be controlled by the range of activity, temperature, pulse, cough, snot, eye excrement, ears and feces. In order to confirm the health of livestock, this paper uses calf face image data to classify the health status by image shape, color and texture. A series of images that have been processed in advance and can judge the health status of calves were used in the study, including 177 images of normal calves and 130 images of abnormal calves. We used GLCM calculation and Convolutional Neural Networks to extract 6 texture attributes of GLCM from the dataset containing the health status of calves by detecting the image of calves and learning the composite image of Convolutional Neural Networks. In the research, the classification ability of GLCM-CNN shows a classification rate of 91.3%, and the subsequent research will be further applied to the texture attributes of GLCM. It is hoped that this study can help us master the health status of livestock that cannot be observed by the naked eye.
Material defects in the Steam Generator Tubes (SGT) of sodium cooled fast breeder reactor (PFBR) can lead to leakage of water into sodium. The water and sodium reaction will lead to major accidents. Therefore, the examination of steam generator tubes for the early detection of defects is an important requirement for safety and economic considerations. In this work, the Magnetic Flux Leakage (MFL) based Non Destructive Testing (NDT) technique is used to perform the defect detection process. The rectangular notch defects on the outer surface of steam generator tubes are modeled using COMSOL multiphysics 4.3a software. The obtained MFL images are de-noised to improve the integrity of flaw related information. Grey Level Co-occurrence Matrix (GLCM) features are extracted from MFL images and taken as input parameter to train the neural network. A comparative study on characterization have been carried out using feed-forward back propagation (FFBP) and cascade-forward back propagation (CFBP) algorithms. The results of both algorithms are evaluated with Mean Square Error (MSE) as a prediction performance measure. The average percentage error for length, depth and width are also computed. The result shows that the feed-forward back propagation network model performs better in characterizing the defects.
Park, Sungjae;Eom, Jinah;Ko, Bokyun;Park, Jeong-Won;Lee, Chang-Wook
Journal of the Korean earth science society
/
v.41
no.1
/
pp.31-39
/
2020
Cheonji, the largest caldera lake in Asia, is located at the summit of Baekdu Mountain. Cheonji is covered with snow and ice for about six months of the year due to its high altitude and its surrounding environment. Since most of the sources of water are from groundwater, the water temperature is closely related to the volcanic activity. However, in the 2000s, many volcanic activities have been monitored on the mountain. In this study, we analyzed the dimension of ice produced during winter in Baekdu Mountain using Sentinel-1 satellite image data provided by the European Space Agency (ESA). In order to calculate the dimension of ice from the backscatter image of the Sentinel-1 satellite, 20 Gray-Level Co-occurrence Matrix (GLCM) layers were generated from two polarization images using texture analysis. The method used in calculating the area was utilized with the Support Vector Machine (SVM) algorithm to classify the GLCM layer which is to calculate the dimension of ice in the image. Also, the calculated area was correlated with temperature data obtained from Samjiyeon weather station. This study could be used as a basis for suggesting an alternative to the new method of calculating the area of ice before using a long-term time series analysis on a full scale.
Journal of the Korea Society of Computer and Information
/
v.16
no.10
/
pp.83-92
/
2011
The aim of this study is to evaluate whether 3D nuclear chromatin texture features are significant in recognizing the progression of cervical cancer. In particular, we assessed that our method could detect subtle differences in the chromatin pattern of seemingly normal cells on specimens with malignancy. We extracted nuclear texture features based on 3D GLCM(Gray Level Co occurrence Matrix) and 3D Wavelet transform from 100 cell volume data for each group (Normal, LSIL and HSIL). To evaluate the feasibility of 3D chromatin texture analysis, we compared the correct classification rate for each of the classifiers using them. In addition to this, we compared the correct classification rates for the classifiers using the proposed 3D nuclear texture features and the 2D nuclear texture features which were extracted in the same way. The results showed that the classifier using the 3D nuclear texture features provided better results. This means our method could improve the accuracy and reproducibility of quantification of cervical cell.
Kim, Yeong-Ju;Lee, Jin-Soo;Kang, Se-Sik;Kim, Changsoo
Journal of radiological science and technology
/
v.40
no.2
/
pp.237-243
/
2017
This study evaluated the applicability of computer-aided diagnosis by retrospective analysis of GLCM algorithm based on cytopathological diagnosis of normal and malignant nodules in thyroid ultrasound images. In the experiment, the recognition rate and ROC curve of thyroid malignant nodule were analyzed using 6 parameters of GLCM algorithm. Experimental results showed 97% energy, 93% contrast, 92% correlation, 92% homogeneity, 100% entropy and 100% variance. Statistical analysis showed that the area under the curve of each parameter was more than 0.947 (p = 0.001) in the ROC curve, which was significant in the recognition of thyroid malignant nodules. In the GLCM, the cut-off value of each parameter can be used to predict the disease through analysis of quantitative computer-aided diagnosis.
This paper examines that is extracted certain information in forest areas within high resolution imagery based on wavelet transformation. First of all, study areas are selected one more species distributed spots refer to forest type map. Next, study area is cut 256 x 256 pixels size because of image processing problem in large volume data. Prior to wavelet transformation, five texture parameters (contrast, dissimilarity, entropy, homogeneity, Angular Second Moment (ASM≫ calculated by using Gray Level Co-occurrence Matrix (GLCM). Five texture images are set that shifting window size is 3x3, distance .is 1 pixel, and angle is 45 degrees used. Wavelet function is selected Daubechies 4 wavelet basis functions. Result is summarized 3 points; First, Wavelet transformation images derived from contrast, dissimilarity (texture parameters) have on effect on edge elements detection and will have probability used forest road detection. Second, Wavelet fusion images derived from texture parameters and original image can apply to forest area classification because of clustering in Homogeneous forest type structure. Third, for grading evaluation in forest fire damaged area, if data fusion of established classification method, GLCM texture extraction concept and wavelet transformation technique effectively applied forest areas (also other areas), will obtain high accuracy result.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.