• 제목/요약/키워드: Gravity system

Search Result 1,007, Processing Time 0.023 seconds

Measurement of Gravity Center for Rotor Blades by Compensation of Machining Error in Jig (지그의 가공오차 보정에 의한 블레이드 무게 중심 측정)

  • Kong, Jae-Hyun;Kim, Ki-Sung;Ye, Sang-Don;Chun, See-Young;Hur, Kwan-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.41-47
    • /
    • 2010
  • There are many unbalanced models such as helicopter's rotor blades, small-sized precision motor in industrial applications. In the real products, their gravity center usually does not accord with the desired gravity center. If the deviation is large between them, it can be a major cause of vibration and noise as the part of model rotate. Therefore the gravity center in the rotational parts should be controlled properly because of static and dynamic balancing of the parts. In the research, the rotor blade of unmanned helicopter has been selected to obtain the high quality of balancing. In order to achieve the purpose, measuring system has been developed. In the system applied principle is three point weighting method, which is one of the Multiple-point Weighting Method. It has circle fitting for compensation of machining error, after measuring the values. From this study, the results showed that the proposed measurement procedure gives reliable and precise gravity center.

Displacement of Dongducheon and Wangsukcheon Fault Observed by Gravity Field Interpretation (중력장 해석으로 관측된 동두천 및 왕숙천 단층의 변위)

  • Sungchan Choi;Sung-Wook Kim;Eun-Kyeong Choi;Younghong Shin
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.73-81
    • /
    • 2024
  • To estimate the tectonic displacement of the Chugaryeong Fault System (CFS), gravity surveys were conducted along the Dongducheon fault (DF) and the Wangsukcheon fault (WF). A total of 1,100 stations for the DF and WF regions have been added to the current gravity database. The results of the gravity interpretation indicate that (1) the dextral displacement of the DF is about 3,000 m, similar to the tectonic displacement (2,900-3,100 m) shown in the geological map. (2) The dextral displacement of the WF is about 3,200 m. (3) Taken together, the tectonic displacement of the CFS is estimated to be about 3,000 m on average. To investigate more accurate tectonic displacement of the CFS, further gravity surveys is planned for the Pocheon fault, Gyeonggang fault, and Inje fault.

ATTITUDE DETERMINATION AND CONTROL SYSTEM OF KITSAT-1 (우리별 1호의 자세제어 시스템)

  • 이현우;김병진;박동조
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.67-81
    • /
    • 1996
  • The attitude dynamics of KITSAT-1 are modeled including the gravity gradient stabilization method. We define the operation scenario during the initial attitude stabilization period by means of a magnetorquering control algorithm. The required constraints for the gravity gradient boom deployment are also examined. Attitude dynamics model and control laws are verified by analyzing in-orbit attitude sensor telemetry data.

  • PDF

An integrated airborne gravity survey of an offshore area near the northern Noto Peninsula, Japan (일본 노토 반도 북쪽 연안의 복합 항공 중력탐사)

  • Komazawa, Masao;Okuma, Shigeo;Segawa, Jiro
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.88-95
    • /
    • 2010
  • An airborne gravity survey using a helicopter was carried out in October 2008, offshore along the northern Noto Peninsula, to understand the shallow and regional underground structure. Eleven flight lines, including three tie lines, were arranged at 2 km spacing within 20 km of the coast. The total length of the flight lines was ~700 km. The Bouguer anomalies computed from the airborne gravimetry are consistent with those computed from land and shipborne gravimetry, which gradually decrease in the offshore direction. So, the accuracy of the airborne system is considered to be adequate. A local gravity low in Wajima Bay, which was already known from seafloor gravimetry, was also observed. This suggests that the airborne system has a structural resolution of ~2 km. Reduction of gravity data to a common datum was conducted by compiling the three kinds of gravity data, from airborne, shipborne, and land surveys. In the present study, we have used a solid angle numerical integration method and an iteration method. We finally calculated the gravity anomalies at 300 m above sea level. We needed to add corrections of 2.5 mGals in order to compile the airborne and shipborne gravity data smoothly, so the accuracy of the Bouguer anomaly map is considered to be nearly 2 mGal on the whole, and 5 mGals at worst in limited or local areas.

Development of Time Measure System for Acceleration of Gravity Experiment (중력 가속도 실험을 위한 시간 측정 시스템 개발)

  • Lee, Hyeon-Hee;Kim, Seong-Gon;Chin, Dal-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2280-2284
    • /
    • 2002
  • This study is to develop a time measure system for acceleration of gravity verification. The system can measure time interval between two points when an object passes through the points. The system has 1${\mu}$sec time resolution. The AT90S8515 microprocessor, product of ATMEL. can make 1${\mu}$sec time resolution possible connected with the 8 MHz fine crystal oscillator. The two external signals called 'start' and 'stop' have AT90S8515 that counted time intervals of the two signals. Sensors are composed of the IR beam emitting diode. TNL108 and the IR beam receiving photo diode, TNL601, produced by NEC company. In order to acquire the measurement of exactitude of the system, measure the pendulum period. Experimental result, the average period =3.0406sec with pendulum length of 2.314m. The acceleration of gravity g=$908821{\pm}6.416{\times}1^{-4}m/s^2$.

  • PDF

Search for Gravity Waves with n New All-sky Camera System

  • Kim, Yong-Ha;Chung, Jong-Kyun;Won, Yong-In;Lee, Bang-Yong
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.263-266
    • /
    • 2002
  • Gravity waves have been searched for with a new all-sky camera system over Korean Peninsular. The all-sky camera consists of a 37mm/F4.5 Mamiya fisheye lens with a 180 dog field of view, interference filters and a 1024 by 1024 CCD camera. The all-sky camera has been tested near Daejeon city, and moved to Mt. Bohyun where the largest astronomical telescope is operated in Korea. A clear wave pattern was successfully detected in OH filter images over Mt. Bohyun on July 18, 2001, indicating that small scale coherent gravity waves perturbed OH airglow near the mesopause. Other wave features are since then observed with Na 589.8nm and OI 630.0nm filters. Since a Japanese all-sky camera network has already detected traveling ionospheric disturbances (TID) over the northeast-southwest range of Japanese islands, we hope our all-sky camera extends the coverage of the TID's observations to the west direction. We plan to operate our all-sky camera all year around to study seasonal variation of wave activities over the mid-latitude upper atmosphere.

Natural Convection Induced by g-jitter in an Enclosure under Null Gravity (무중력 상태하의 밀폐 용기 내에서 g-jitter에 의한 자연 대류)

  • Kim, Ki-Hyun;Hyun, Jae-Min;Kwak, Ho-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.522-527
    • /
    • 2001
  • Comprehensive numerical computations are made of side-heated squire cavity which is exposed to zero mean g-jitter. Numerical solutions are acquires to the governing two-dimensional Navier-Stokes equations for a Boussinesq fluid. When the system is exposed to pure sinusoidal g-jitter inclined to the vertical axis, in spite of zero mean gravity there exist non zero net flow fields [8]. The resonance phenomenon are observed in moderate Rayleigh number. And, by comprehensive numerical work, unlike[5], it is found that they are related with the overshoot phenomenon of the sudden gravity up problem.

  • PDF

The effect of gravity and hydrostatic initial stress with variable thermal conductivity on a magneto-fiber-reinforced

  • Said, Samia M.;Othman, Mohamed I.A.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.425-434
    • /
    • 2020
  • The present paper is concerned at investigating the effect of hydrostatic initial stress, gravity and magnetic field in fiber-reinforced thermoelastic solid, with variable thermal conductivity. The formulation of the problem applied in the context of the three-phase-lag model, Green-Naghdi theory with energy dissipation, as well as coupled theory. The exact expressions of the considered variables by using state-space approaches are obtained. Comparisons are performed in the absence and presence of the magnetic field as well as gravity. Also, a comparison was made in the three theories in the absence and presence of variable thermal conductivity as well as hydrostatic initial stress. The study finds applications in composite engineering, geology, seismology, control system and acoustics, exploration of valuable materials beneath the earth's surface.

Analysis of the Gravity Effect on the Distribution of Refrigerant Flow in a Multi-circuit Condenser (다분지 응축기의 냉매유량 분배에 미치는 중력의 영향을 고려한 해석방법)

  • Lee Jangho;Kim Moo Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1167-1174
    • /
    • 2004
  • The method to consider gravity effect on the performance of a condenser is developed, and a simple condenser having 'nU' type two circuits is analyzed. Each circuit has the same length and inlet air-side operational conditions. The only difference between two circuits is the direction of refrigerant flow, which is exactly opposite each other between the upper 'n' type circuit and the lower 'U' type circuit. It is shown that the gravity makes the distribution of refrigerant flow uneven in the two circuits at lower refrigerant flow rates; heat transfer rate also becomes uneven. Moreover, much of the refrigerant exists as liquid state in the circuit having low refrigerant flow rate, which will make the cycle balance unstable in the refrigeration cycle system like a heat pump.

Nonlinear behavior of concrete gravity dams and effect of input spatially variation

  • Mirzabozorg, H.;Kianoush, R.;Varmazyari, M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.365-377
    • /
    • 2010
  • In the present article, effect of non-uniform excitation due to spatially variation of seismic input on nonlinear response of concrete gravity dams is considered. The reservoir is assumed compressible. Isotropic damage mechanics approach is used to model static and dynamic nonlinear behavior of mass concrete in 2D space. The validity of utilized nonlinear model is considered using available theoretical results under static and dynamic conditions. The tallest monolith of Pine Flat dam is selected as a case study. Two cases are analyzed for considering the effect of limited wave propagation velocity on seismic behavior of the dam-reservoir system in which travelling velocities are chosen as 2000 m/s and infinity. It is found that tensile damage in neck and toe regions and also, in the vicinity of the base increase when the system is excited non-uniformly.