• Title/Summary/Keyword: Gravelly soil

Search Result 29, Processing Time 0.024 seconds

The Study on Soil Classification in Sri Lanka

  • Hyun, Byung-Keun;Mapa, R.B.;Sonn, Yeon-Kyu;Cho, Hyun-Jun;Shin, Kooksik;Choi, Jung-won;Jung, Seog-Jae;Jang, Byung-Chun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.153-162
    • /
    • 2015
  • Land information is important for the international agricultural companies. This study investigated the agriculture and soil information in Sri Lanka. This study is the results from investigation of soil properties and agricultural properties determined by the Soil Taxonomy classification system for the soils in Sri Lanka. The order of the main agricultural imports in Sri Lanka was wheat > refined Sugar > dry Onion > Rice > Lentils. The climate of Sri Lanka is divided into three climatic zones. There are a wet zone, an intermediate zone, and a dry zone. Rainfall of the wet zone was $3,000-5,000mm\;year^{-1}$. The rainfall of the dry zone was less than $1,000m^{-1}$. The intermediate zone was in the middle area. Soil series of Sri Lanka were 109 in total. Detailed information of soil series was: 6 of soil Orders, 15 of Suborders, 39 of Great groups, and 56 of Subgroups. Soil texture of topsoil was much more coarse, but subsoil was gravelly coarse soil. Soil of Sri Lanka was classified as a Soil Order. The orders were Entisols > Alfisols > Ultisols > Inceptisols > Histosols > Vertisols.

Characteristics on Stabilization Measures for Cutting Slopes of Forest Roads (임도구조 요인에 따른 절토비탈면 안정구조물의 특성)

  • Baek, Seung-An;Ji, Byoung-Yun;Lee, Joon;Cha, Du-Song
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.1
    • /
    • pp.71-75
    • /
    • 2014
  • Forest roads failure is one of the most common problems caused by heavy rainfalls. This study investigated the characteristics on stabilization measures installed for cutting slopes failure of forest road resulted from heavy rainfalls. Three primary factors (slope length, slope gradient, soil type) affecting cutting slope failure were considered and stabilization measures were classified into two types (A type: wooden fence, vegetation sandbag, stone masonry; B type: wire cylinder, gabion, concrete retaining wall) through discriminant analysis based on their capacity of resistance to slope failure. Results showed that A type was mainly installed in such conditions as cut slope <8 m, cut slope gradient $30-40^{\circ}$ and soil type with soil while B type occurred in locational conditions as cut slope length >8 m, cut slope gradient < $30^{\circ}$ and > $30^{\circ}$, and soil type of gravelly soil and rock.

A case study of monitored natural attenuation at the petroleum hydrocarbon contaminated site: I. Site characterization (유류오염부지에서 자연저감기법 적용 사례연구: I. 부지특성 조사)

  • 윤정기;이민효;이석영;이진용;이강근
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.27-35
    • /
    • 2003
  • The study site located in an industrial complex has a Precambrian age gneiss as a bedrock. The poorly-developed, disturbed soils in the study site have loamy-textured surface soil (1 to 2 m) and gravelly sand alluvium subsurface (2 to 6 m) on the top of weathered gneiss bedrock. The depth of the groundwater table was about 3.5 m below ground surface and increased toward down-gradient of the site. The hydraulic conductivity of transmitted zone (gravelly coarse sand) was in the range of 5.0${\times}$10$\^$-2/∼1.85${\times}$10$\^$-1/ cm/sec. The fine sand layer was in the range of 1.5${\times}$10$\^$-3/ to 7.6${\times}$10$\^$-3/ cm/sec. and the reclaimed upper soil layer was less than 10$\^$-4/ cm/sec. Toluene, ethylbenzene, and xylene (TEX) was the major contaminant in the soil and groundwater. The average depth of the soil contamination was about 1.5 m in the gravelly sand alluvium layer. At the depth interval 2.4∼4.8 m, the highest contamination in the soil is located approximately 50 to 70 m from the suspected source areas. The concentration of TEX in the groundwater was highest in the suspected source area and a lesser concentration in the center and southwest parts of the site. The TEX distribution in the groundwater is associated with their distribution in the soil. Microbial isolation showed that Pseudomonas flurescence, Burkholderia cepacia, and Acinetobactor lwoffi were the dominant aerobic bacteria in the contaminated soils. The analytical results of the groundwater indicated that the concentrations of dissolved oxygen (DO), nitrate, and sulfate in the contaminated area were significantly lower than their concentrations in the none-contaminated control area. The results also indicated that groundwater at the contaminated area is under anaerobic condition and sulfate reduction is the predominant terminal electron accepting process. The total attenuation rate was 0.0017 day$\^$-1/ and the estimated first-order degradation rate constant (λ) was 0.0008 day$\^$-1/.

표준관입시험 수행 과정에서의 문제점과 개선방향

  • 백세환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.275-280
    • /
    • 2001
  • Although important developments have taken place since ESOPT 1974 both with respect to the test method as well as the interpretation of the results, many uncertainties still remain in the Standard Penetration Test(SPT). The main pitfall of SPT is that it has not been standardized differing from its terminology and further, the possibility of standardization is very low in practice. Therefore, lack of knowledge on the equipment and method of SPT tends to cause some errors in interpretation of the results. It Is especially important to understand this tendency in domestic design, because most foundations are designed based on SPT results only. Many researchers have made an effort to minimize the uncertainties of SPf in Korea, it is not cleary defined what the most effective method of execution and interpretation of SPT Some uncertainties which many geotechnical engineers encounter in practice are introduced to discuss about improvement of test procedure and interpretation.

  • PDF

Characteristics of Soils Distributed on the "Dokdo" Island in South Korea (우리나라 독도 분포 토양의 특성)

  • Sonn, Yeon-Kyu;Park, Chan-Won;Zhang, Yong-Seon;Hyun, Byung-Keun;Song, Kwan-Cheol;Yoon, Eul-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.187-193
    • /
    • 2011
  • RDA has been conducting soil survey for farmland all over the korean countries (1964-1999), including small islands and areas of the civilian passage restriction line (2000-present). We conducted a soil survey in Dokdo and Ulreungdo islands and found a new soil series "Dokdo" in Dokdo island. Soil properties of Dokdo were similar to those of Ulreungdo. Representative profiles of Dokdo soil was located at the south 20m of Daehan peak on Seodo (longitude $131^{\circ}$51'53", latitude $37^{\circ}$14'35"), Dokdo. The soil series "Dokdo" was interpreted as the soils were derived from trachyandesite, trachyte, rhyolite, and tuff. The soil properties of Dokdo series were classified as different ones from Korean soil series previously. The soil depth of Dokdo series was very shallow (0-20cm) and soil layer was consisted of very dark brown (10YR 2/2) rocky sandy loam and dark brown (7.5YR 3/2) gravelly silt loam in AC layer. The soils of Dokdo displayed characteristics of a mesic temperature regime, similar as Ulreungdo soils, which were classified as coarse loamy, mesic family of Lithic Udorthents. The total area of Dokdo soil was 18.7 ha, containing Dongdo (7.3 ha), Seodo (8.9 ha), and the others (2.6 ha). The area of Dokdo series in Dokdo was 10.47 ha (Dongdo 4.13 ha, Seodo 6.34 ha) and 808.56 ha in Ulreungdo, where the total soil area was 7,256 ha.

Application of Surface Cover Materials and Soil Amendments for Reduction of Non-Point Source Pollution from Upland Fields (배추와 무밭에서 발생하는 비점오염원 저감을 위한 피복재와 토양개량제 적용)

  • Shin, Min Hwan;Jang, Jeong Ryeol;Shin, Hyun Jun;Kum, Dong Hyuk;Choi, Yong Hun;Won, Chul Hee;Lim, Kyoung Jae;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.21-28
    • /
    • 2013
  • The objective of the study was to investigate the effect of rice straw mat, rice straw mat with PAM (Polyacrylamide) and gypsum addition on surface runoff and sediment discharge in field. Six experimental plots of $5{\times}22m$ in size and 3 % in slope prepared on gravelly sandy loam soil were treated with control, rice straw mat cover with gypsum and rice straw mat cover with gypsum and PAM. Radish in Spring and Chinese cabbage in autumn growing seasons were cultivated. Non point source (NPS) pollution discharge was monitored and compared among the treatments. Rainfall of the 10 monitored events ranged from 17.0 mm to 93.5 mm. Runoff coefficient of the events was 0.005~0.239 in control plot, 0~0.176 in rice straw plot with gypsum and 0~0.046 in rice straw mat plot with gypsum and PAM. When compared to the control plot, the runoff amount was reduced by 10.4~100 % (Ave. 60.8) in rice straw plot with gypsum and 80.7~100 % (Ave. 96.7 %) in rice straw mat plot with gypsum and PAM. The reduction of NPS pollution load was 54.6 % for BOD5, 71.5 % for SS, 41.6 % for TN and 61.4 % for T-P in rice straw with gypsum plot and 91.9 % for BOD5, 92.0 % for SS, 88.0 % for TN and 88.5 % for T-P in rice straw mat with gypsum and PAM plot. This research revealed that rice straw mat cover with soil amendments on the soil surface could not only increase the crop yield but also reduce the NPS pollution loads substantially.

A Prediction Model of Resilient Modulus for Recycled Crushed-Rock-Soil-Mixture (재활용 암버력 - 토사의 회복탄성계수 예측 모델)

  • Park, In-Beom;Mok, Young-Jin
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.147-155
    • /
    • 2010
  • A prediction model of resilient modulus($E_R$) was developed for recycled crushed-rock-soil mixtures. The evaluation of $E_R$, using the "orthodox" repeated loading tri-axial test, is not feasible for such a large-size gravelly material. An alternative method was proposed hereby using the subtle different modulus called nonlinear dynamic modulus. The prediction model was developed by utilizing in-situ measured shear modulus($G_{max}$) and its reduction curves of modeled materials using the large free-free resonant column test. A pilot evaluation of the model parameters was carried out for recycled crushed-rock-soil-mixture at a highway construction site near Gimcheon, Korea. The values of the model parameters($A_E,\;n_E,\;{\varepsilon}_r\;and\;{\alpha}$) were proposed as 9618, 0.47, 0.0135, and 0.8, respectively.

Soil Mechanical Properties for Fill Slope of Forest Road in Mt. Gari (춘천(春川) 가리산(加里山) 지역(地域)의 임도(林道) 성토사면(盛土斜面)의 토질역학적(土質力學的) 특성(特性))

  • Cha, Du Song;Chun, Kun Woo;Ji, Byoung Yun;Oh, Jae Heun
    • Journal of Forest and Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.98-106
    • /
    • 1999
  • This study was carried out to analyze the mechanical properties of soil for counterplan of recovery construction and the slope stability on fill slope of Sang-gul forest road in Mt. Gari. To analyze the mechanical properties of apparent soil on fill slope in forest road, various soils such as soil, gravelly sandy soil, weathered rock were used as experimental sample in this study. In each experimental sample, particle size distribution test, liquid limit test, plastic limit test, and specific gravity test were carried by Korean industrial standards(KS F 2302, KS F 2303, KS F 2304, KS F 2306, KS F 2308). Through the results of soil particle size distribution analysis, soil moisture content analysis, and specific gravity analysis, soil texture, uniformity coefficient, curvature coefficient, dry density and specific gravity were able to be determined in sampling site. As a results in this study, soil was classified as SP, SW, GP by Unified Soil Classification Standard (USCS). specific gravity and dry unit weight of soil have the value range of 2.52~2.60 and 1.39~1.43, respectively. Also plastic index showed non plastic condition.

  • PDF

Numerical Modeling for the Detection of Debris Flow Using Detailed Soil Map and GIS (정밀토양도와 GIS를 이용한 토석류 발생지역 예측 분석)

  • Kim, Pan Gu;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.43-59
    • /
    • 2017
  • This study presents the prediction methodology of debris flow occurrence areas using the SINMAP model. Former studies used a single calibration region applying some of the soil test results to predict debris flow occurrence in SINMAP model, which couldn't subdivide the soil properties for the target areas. On the other hands, a multi-calibration region using a detailed soil map and soil strength parameters (c, ${\phi}$) for each soil series to make up for limitation of former studies is proposed. In this process, soils with soil erodibility factor (K) are classified into three types: 1) gravel and gravelly soil. 2) sand and sandy soil, and 3) silt and clay. In addition, T/R estimation method using mean elevation of target area instead of T/R method using actual occurrence time is suggested in this study. The suggested method is applied to Seobyeok-1 ri area, Bonghwa-gun where debris flow occurred. As a result of comparison between two T/R estimation method, both T/R estimations are almost equal. Therefore, the suggested methodologies in this study will contribute to set up the national-wide mitigation plan against debris flow occurrence.

Taxonomical Classification and Genesis of Donggui Series in Jeju Island (제주도 토양인 동귀통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Keun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol;Kang, Ho-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.20-26
    • /
    • 2010
  • This study was conducted to reclassify Donggui series based on the second edition of Soil Taxonomy and to discuss the formation of Donggui series in Jeju Island. Morphological properties of typifying pedon of Donggui series were investigated and physico-chemical properties were analyzed according to Soil survey laboratory methods manual. The typifying pedon has very dark grayish brown (10YR 3/2) silt loam A horizon (0~17 cm), gravelly very dark grayish brown (10YR 3/2) silt loam BA horizon (17~42 cm), gravelly very dark grayish brown (10YR 3/2) silty clay loam Bt1 horizon (43~80 cm), brown (7.5YR 4/6) silty clay Bt2 horizon (80~105 cm), and brown (10YR 5/4) silty clay Bt3 horizon (105~150 cm). It is developed in lava plain and are derived from basalt and pyroclastic materials. The typifying pedon contains 1.3~2.1% oxalate extractable (Al + 1/2 Fe), less than 85% phosphate retention, and higher bulk density than 0.90 $Mg/m^3$. That can not be classified as Andisol. But it has an argillic horizon from a depth of 22 to 150 cm and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. That can be classified as Ultisol, not as Andisol and Inceptisol. It has udic soil moisture regime, and can be classified as Udalf. Also that meets the requirements of Typic Hapludalf. It has 18-35% clay at the particle-size control section, and have thermic soil temperature regime. Therefore Donggui series can be classified as fine loamy, mixed, thermic family of Typic Hapludalfs, not as fine silty, mixed, thermic family of Dystric Eutrudepts.