• Title/Summary/Keyword: Grashof Number

Search Result 65, Processing Time 0.021 seconds

Study of Convective Flow and Heat Transfer Phenomena in the Phase Change Material (상변화물질의 대류유동 및 열전달 현상에 관한 연구)

  • Shon, Sang-Suk;Lee, Chae-Moon;Lee, Jae-Heon;Yim, Chang-Soon
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.43-53
    • /
    • 1986
  • The objective of this study is to report on the characterics of convective flow and heat transfer during metling process in order to provide design information for thermal energy storage systems which use phase change material. In present study, flow and heat transfer characteristics of the Phase Change Material in the Open Top Model (O.T.M) and in the Closed Top Model (C.T.M) were studied numerically by the control volume formulation using the algebraic non-orthogonal coordinate transformation. For the calculation procedure, the physical properties of fluid are assumed to be constant except density which is linely dependent on temperature in the bouyancy term of momentum equations. At start of melting process, the thickness of melting layer is assumed from the Stefan Problem assumption. The heat transfer results of Open Top Model and Closed Top Model are compared with the parameters of Grashof number and aspect ratio. It was found that heat transfer phenomena in melted region was greatly affected by buoyancy-driven natural convection and the melting distance of Open Top Model at the upper region is greater than that of Closed Top Model.

  • PDF

Implementation of a new empirical model of steam condensation for the passive containment cooling system into MARS-KS code: Application to containment transient analysis

  • Lee, Yeon-Gun;Lim, Sang Gyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3196-3206
    • /
    • 2021
  • For the Korean design of the PCCS (passive containment cooling system) in an innovative PWR, the overall thermal resistance around a condenser tube is dominated by the heat transfer coefficient of steam condensation on the exterior surface. It has been reported, however, that the calculated heat transfer coefficients by thermal-hydraulic system codes were much lower than measured data in separate effect tests. In this study, a new empirical model of steam condensation in the presence of a noncondensable gas was implemented into the MARS-KS 1.4 code to replace the conventional Colburn-Hougen model. The selected correlation had been developed from condensation test data obtained at the JERICHO (JNU Experimental Rig for Investigation of Condensation Heat transfer On tube) facility, and considered the effect of the Grashof number for naturally circulating gas mixture and the curvature of the condenser tube. The modified MARS-KS code was applied to simulate the transient response of the containment equipped with the PCCS to the large-break loss-of-coolant accident. The heat removal performances of the PCCS and corresponding evolution of the containment pressure were compared to those calculated via the original model. Various thermal-hydraulic parameters associated with the natural circulation operation through the heat transport circuit were also investigated.

Natural Convection Heat Transfer on Inclined Plates (경사진 평판에서의 자연대류 열전달)

  • Lim, Chul-Kyu;Heo, Jeong-Hwan;Chung, Bum-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.701-708
    • /
    • 2011
  • Natural convection heat transfers on inclined flat plates were measured for Grashof numbers of $8.06{\times}10^7$ and $3.45{\times}10^9$ by using a copper sulfate electroplating system. The inclinations of the plates were varied from upward-facing horizontal to downward-facing horizontal. Test results for the downward-facing plate agree well with the existing theory that the Nusselt number can be calculated by replacing gravitational acceleration, g with g $cos{\theta}$ in the heat transfer correlation for the vertical plate. The natural convection flows for the upward-facing plate follow two distinct flow regimes: boundary layer regime and flow separation regime. The copper plating pattern for the upward-facing plates clearly reveals the flow separation points.

Measurements of sooting in single droplet combustion under the normal-gravity condition (정상 중력장하의 단일 액적연소에 있어서 매연 농도의 측정)

  • Lee, Gyeong-Uk;Lee, Chang-Eon;O, Su-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.468-480
    • /
    • 1998
  • The temporal and spatial distributions of soot volume fractions were measured for single toluene droplet flames as a function of pressure under the normal-gravity condition. In order to characterize the transient nature of the flame and sooting regions, a full-field light extinction and subsequent tomographic inversion technique was used. The reduction in sooting as a function of pressure was assessed by comparison of the maximum soot volume fractions at several vertical positions along the axis above the droplet. The maximum soot volume fraction was reduced by 70% when the pressure was reduced by 60% from 1 atm to 0.4 atm. The reduction in sooting is attributed to variation of the geometric configuration of flame which reduces the system Grashof number as well as only the change in the adiabatic flame temperature as the pressure decreases. The gravimetrically-measured total soot yield was also compared to the optically-measured soot volume fraction to obtain a correlation between the two measurements. As a result, the total soot yield was linearly proportional to the optically-measured maximum soot volume fraction and linearly reduced as the pressure decreased. Accordingly, the non-intrusive full-field light extinction-measurements were able to be calibrated not only to measure soot volume fraction, but to simultaneously evaluate the total soot yield emitted from the toluene droplet flame (which is useful in the practical application).

Effect of Adiabatic Sidewalls on Natural Convection in a Rectangular Cavity (사각공동내 자연대류에서 측면 단열벽에 의한 영향)

  • Heo, Jeong-Hwan;Chung, Bum-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.825-834
    • /
    • 2010
  • In this study, we investigated the effects of adiabatic walls on natural convection in various rectangular cavities experimentally and numerically. Heat transfer rates were measured for cavities with and without adiabatic sidewalls by varying Grashof number from $1.53\times10^7$ to $1.01\times10^{10}$. Some typical test results were successfully simulated using FLUENT. In the case of very narrow cavities, where the adiabatic walls were very close to each other, it was difficult to perform experiments; therefore, FLUENT simulations were performed. The existing heat transfer correlations for rectangular cavities were well predicted by the experimental and numerical results. As expected, the effects of adiabatic walls were restricted to the very narrow region near the walls. This study was carried out during the development of an analogy experimental method in which heat-transfer systems are replaced with mass-transfer systems using copper sulfate electroplating systems. The results of this study provide theoretical background of handling adiabatic walls during the design of test facilities.