• Title/Summary/Keyword: Graphitic Carbon

Search Result 85, Processing Time 0.028 seconds

Silicene on Other Two-dimensional Materials: Formation of Heterostructure

  • Kim, Jung Hwa;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.44 no.4
    • /
    • pp.123-132
    • /
    • 2014
  • Silicene is one of the most interesting two-dimensional materials, because of not only the extraordinary properties similar to graphene, but also easy compatibility with existing silicon-based devices. However, non-existing graphitic-like structure on silicon and unstable free-standing silicene structure leads to difficulty in commercialization of this material. Therefore, substrates are essential for silicene, which affects various properties of silicene and supporting unstable structure. For maintaining outstanding properties of silicene, van der Waals bonding between silicene and substrate is essential because strong interaction, such as silicene with metal, breaks the band structure of silicene. Therefore, we review the stability of silicene on other two-dimensional materials for van der Waals bonding. In addition, the properties of silicene are reviewed for silicene-based heterostructure.

Nitrogen Incorporation of Nanostructured Amorphous Carbon Thin Films by Aerosol-Assisted Chemical Vapor Deposition

  • Fadzilah, A.N.;Dayana, K.;Rusop, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.165-171
    • /
    • 2013
  • Nanostructured pure a-C and nitrogen doped a-C: N thin films with small particle size of, ~50 nm were obtained by Aerosol-assisted CVD method from the natural precursor camphor oil. Five samples were prepared for the a-C and a-C: N respectively, with the deposition temperatures ranging from $400^{\circ}C$ to $600^{\circ}C$. At high temperature, the AFM clarifies an even smoother image, due to the increase of the energetic carbon ion bombardment at the surface of the thin film. An ohmic contact was acquired from the current-voltage solar simulator characterization. The higher conductivity of a-C: N, of ${\sim}{\times}10^{-2}Scm^{-1}$ is due to the decrease in defects since the spin density gap decrease with the nitrogen addition. Pure a-C exhibit absorption coefficient, ${\alpha}$ of $10^4cm^{-1}$, whereas for a-C:N, ${\alpha}$ is of $10^5cm^{-1}$. The high ${\sigma}$ value of a-C:N is due to the presence of more graphitic component ($sp^2$ carbon bonding) in the carbon films.

Modeling of CNTs and CNT-Matrix Interfaces in Continuum-Based Simulations for Composite Design

  • Lee, Sang-Hun;Shin, Kee-Sam;Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.478-482
    • /
    • 2010
  • A series of molecular dynamic (MD), finite element (FE) and ab initio simulations are carried out to establish suitable modeling schemes for the continuum-based analysis of aluminum matrix nanocomposites reinforced with carbon nanotubes (CNTs). From a comparison of the MD with FE models and inferences based on bond structures and electron distributions, we propose that the effective thickness of a CNT wall for its continuum representation should be related to the graphitic inter-planar spacing of 3.4${\AA}$. We also show that shell element representation of a CNT structure in the FE models properly simulated the carbon-carbon covalent bonding and long-range interactions in terms of the load-displacement behaviors. Estimation of the effective interfacial elastic properties by ab initio simulations showed that the in-plane interfacial bond strength is negligibly weaker than the normal counterpart due to the nature of the weak secondary bonding at the CNT-Al interface. Therefore, we suggest that a third-phase solid element representation of the CNT-Al interface in nanocomposites is not physically meaningful and that spring or bar element representation of the weak interfacial bonding would be more appropriate as in the cases of polymer matrix counterparts. The possibility of treating the interface as a simply contacted phase boundary is also discussed.

The deposition characteristics of the diamond films deposited on Si, Inconel 600 and steel by microwave plasma CVD method (마이크로파 플라즈마 CVD 방법으로 Si, Inconel 600 및 Steel 모재위에 증착된 다이아몬드 박막의 증착특성)

  • 김현호;김흥회;이원종
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.3
    • /
    • pp.133-141
    • /
    • 1995
  • The deposition characteristics of diamond films were investigated for three different substrates : Si, Inconel 600 and steel. Diamond films were prepared by microwave plasma CVD method using $CH_4$, $H_2$ and $O_2$ as reaction gases. The deposited films were analyzed with SEM, Raman spectroscopy and ellipsometer. For Si substrate, diamond films were successfully obtained for most of the deposition conditions used in this study. As the $CH_4$ flow rate decreased and the $O_2$ flow rate increased, the quality of the film was improved due to the reduced non-diamond phase in the film. For Inconel 600 substrate, the surface pretreatment with diamond powders was required to deposit a continuous diamond film. The films deposited at temperatures of $600^{\circ}C$ and $700^{\circ}C$ had mainly diamond phase, but they were peeled off locally due to the difference in the thermal expansion coefficient between the substrate and the deposited films. The films deposited at $500^{\circ}C$ and $850^{\circ}C$ had only the graphitic carbon phase. For steel substrate, all of the films deposited had only the graphitie carbon phase. We speculated that the formation of diamond nuclei on the steel substrate was inhibited due to the diffusion of carbon atoms into the steel substrate which has a large amount of carbon solubility.

  • PDF

Structure and properties of ion beam deposited diamond-like carbon films (이온빔 합성법에 의해 증착된 다이아몬드성 카본 필름의 구조 및 특성)

  • 김성화;이광렬;은광용
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.346-352
    • /
    • 1999
  • Diamond-like carbon (DLC) lims were deposited by using end hall type ion gun. Benzene gas was used for the generation of carbon ions. In order to systematically control the ion energy, we applied to the substrate DC, pulsed DC or 250 kHz medium frequency bias voltage, DLC films of superior mechanical properties of hardness 39$\pm$4 GPa and elastic mudulus 290$\pm$50GPa (2 to 6 times better than those of the films deposited by plasma assisted CVD method) could be obtained. Deposition rate was much higher than when using Kaufman type ion source, which results from higher ion beam current of end hall type ion gun. The mechanical properties and atomic bond structure were independent of the bias voltage type ion gun. The mechanical properties and atomic bond structure were independent of the bias voltage type but intimately related with the magnitude of the bias voltage. With increasing the negative bias voltage, the structure of the films changed to graphitic one resulting in decreased content of three dimensional inter-links. Degradation of the mechanical properties with increasing bias voltage could be thus understood in terms of the content odf three dimensional inter-links.

  • PDF

X-ray Diffraction Patterns of Activated Carbons Prepared under Various Conditions

  • Girgis, Badie S.;Temerk, Yassin M.;Gadelrab, Mostafa M.;Abdullah, Ibrahim D.
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.95-100
    • /
    • 2007
  • A series of activated carbons (ACs) were derived from sugarcane bagasse under two activation schemes: steam-pyrolysis at $600-800^{\circ}C$ and chemical activation with $H_3PO_4$ at $500^{\circ}C$. Some carbons were treated at 400, $600^{\circ}C$, or for 1-3 h, and/or in flowing air during pyrolysis of acid-impregnated mass. XRD profiles displayed two broad diffuse bands centered around $2{\theta}=23$ and $43^{\circ}$, currently associated with diffraction from the 002 and 100/101 set of planes in graphite, respectively. These correspond to the interlayer spacing, Lc, and microcrystallite lateral dimensions, La, of the turbostratic (fully disordered) graphene layers. Steam pyrolysis-activated carbons exhibit only the two mentioned broad bands with enhancement in number of layers, with temperature, and small decrease in microcrystallite diameter, La. XRD patterns of $H_3PO_4$-ACs display more developed and separated peaks in the early region with maxima at $2{\theta}=23$, 26 and $29^{\circ}$, possibly ascribed to fragmented microcrystallites (or partially organized structures). Diffraction within the $2{\theta}=43^{\circ}$ is still broad although depressed and diffuse, suggesting that the intragraphitic layers are less developed. Varying the conditions of chemical activation inflicts insignificant structural alterations. Circulating air during pyrolysis leads to enhancement of the basic graphitic structure with destruction and degradation in the lateral dimensions.

The electrochemical Characteristics on the Anode Material of Lithium Ion Secondary Batteries with Discharge Voltage (방전전압에 따른 리튬 이온 2차전지용 음극물질의 전기화학적 특성)

  • Park, Jong-Gwang;Han, Tae-Hui;Jeong, Dong-Cheol;Im, Seong-Hun;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.6
    • /
    • pp.328-334
    • /
    • 2000
  • A lithium ion secondary battery using carbon as a negative electrode has been developed. Further improvements to increase the cell capacity are expected by modifying the structure of the carbonaceous material. There are hopes for the development of large capacity lithium ion secondary batteries with long cycle, high energy density, high power density, and high energy efficiency. In the present paper, needle cokes from petroleum were examined as an anode of lithium ion secondary battery. Petroleum cokes, MCL(Molten Caustic Leaching) treated in Korea Institute Energy Research, were carbonized at various temperatures of 0, 500, 700, $19700^{\circ}C$ at heating rate of $2^{\circ}C$/min for lh. The electrolyte was used lM liPF6 EC/DEC (1:1). The voltage range of charge & discharge was 0.0V(0.05V) ~ 2.0V. The treated petroleum coke at $700^{\circ}C$ had an initial capacity over 560mAh.g which beyond the theoretical maximum capacity, 372mAh/g for LiC6. This phenomena suggests that carbon materials with disordered structure had higher cell capacity than that the graphitic carbon materials.

  • PDF

Metallocene Catalysts on Carbon-based Nano-materials

  • Choi, Baek-Hap;Lee, Jun-O;Lee, Seung-Jun;Ko, Jae-Hyeon;Lee, Kyoung-Seok;Oh, Jung-Hoon;Kim, Yong-Hyun;Choi, In-Sung S.;Park, Sung-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.556-556
    • /
    • 2012
  • Transition metal-based organometallic complexes have shown great talents as a catalyst in various reactions. Designing organic molecules and coordinating them to such active centers have been a promising route to control the catalytic natures. Metallocene, which has transition metal atoms sandwiched by aromatic rings, is one of the representative systems for organometallic catalysts. Group 4-based metallocene catalysts have been most commonly used for the production of polyolefins, which have great world-wide markets in the real life. Graphenes and carbon nanotubes (CNTs) were composed of extended $sp^2$ carbon networks, showing high electron mobility as well as have extremely large steric bulkiness relative to metal centers. We were inspired by these characteristics of such carbon-based nano-materials and assumed that they could intimately interact with active centers of metallocene catalysts. We examined this hypothesis and, recently, reported that CNTs dramatically changed catalytic natures of group 4-based catalysts when they formed hybrid systems with such catalysts. In conclusion, we produced hybrid materials composed of group-4 based metallocenes, $Cp_2ZrCl_2$ and $Cp_2TiCl_2$, and carbon-based nano-materials such as RGO and MWCNT. Such hybrids were generated via simple adsorption between Cp rings of metallocenes and graphitic surfaces of graphene/CNT. The hybrids showed interesting catalytic behaviors for ethylene polymerizations. Resulting PEs had significantly increased Mw relative to those produced from free metallocene-based catalytic systems, which are not adsorbed on carbon-based nano-materials. UHMWPEs with extremely high Mw were obtained at low Tp.

  • PDF

Degradation of Antibiotics Using Silver Decorated Heterojunction Carbon Nitride under Visible Light (은 장식 이종접합 질화탄소를 이용한 가시광선 조건에서의 항생제 분해 연구)

  • Taeyoon, Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.3
    • /
    • pp.23-27
    • /
    • 2023
  • Graphitic carbon nitride (g-C3N4) has been used as effective photocatalyst for degradation of antibiotics under visible light irradiation. However, the fast recombination of hole-electron pair may limit their photocatalytic efficiency. In our study, Ag was grafted on g-C3N4/g-C3N4 isotype heterojunction by a microwave-assisted decomposition method. The structure and physical properties of heterojunction photocatalyst were characterized through X-ray diffraction, UV-DRS, FT-IR, and Photoluminescence analyses. Ag decorated g-C3N4/g-C3N4 isotype heterojunction exhibited excellent photocatalytic activity for degradation of sulfamethoxazole under irradiation under visible light irradiation within 210 min, which is higher than g-C3N4/g-C3N4 isotype heterojunction and bulk g-C3N4. The addition of Ag may broaden the visible light absorption and restrict the recombination of hole-electron pair because of the surface plasmons resonance, resulting in the improving the photocatalytic activity.

Thermal Emissivity of Nuclear Graphite as a Function of its Oxidation Degree (3): Structural Study using Scanning Electron Microscope and X-Ray Diffraction

  • Seo, Seung-Kuk;Roh, Jae-Seung;Kim, Suk-Hwan;Chi, Se-Hwan;Kim, Eung-Seon
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • We study the relationships between the thermal emissivity of nuclear graphites (IG-110, PCEA, IG-430 and NBG-18) and their surface structural change by oxidation using scanning electron microscope and X-ray diffraction (XRD). The nonoxidized (0% weight loss) specimen had the surface covered with glassy materials and the 5% and 10% oxidized specimens, however, showed high roughness of the surface without glassy materials. During oxidation the binder materials were oxidized first and then graphitic filler particles were subsequently oxidized. The 002 interlayer spacings of the non-oxidized and the oxidized specimens were about $3.38{\sim}3.39{\AA}$. There was a slight change in crystallite size after oxidation compared to the nonoxidized specimens. It was difficult to find a relationship between the thermal emissivity and the structural parameters obtained from the XRD analysis.