• Title/Summary/Keyword: Graphite reaction

Search Result 242, Processing Time 0.026 seconds

Effect of Y2O3 Additive Amount on Densification of Reaction Bonded Silicon Carbides Prepared by Si Melt Infiltration into All Carbon Preform (완전 탄소 프리폼으로부터 Si 용융 침투에 의해 제조한 반응 소결 탄화규소의 치밀화에 미치는 Y2O3 첨가량의 영향)

  • Cho, Kyeong-Sik;Jang, Min-Ho
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.301-311
    • /
    • 2021
  • The conversion of all carbon preforms to dense SiC by liquid infiltration can become a low-cost and reliable method to form SiC-Si composites of complex shape and high density. Reactive sintered silicon carbide (RBSC) is prepared by covering Si powder on top of 0.5-5.0 wt% Y2O3-added carbon preforms at 1,450 and 1,500℃ for 2 hours; samples are analyzed to determine densification. Reactive sintering from the Y2O3-free carbon preform causes Si to be pushed to one side and cracking defects occur. However, when prepared from the Y2O3-added carbon preform, an SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C = SiC reaction, 3C and 6H of SiC, crystalline Si, and Y2O3 phases are detected by XRD analysis without the appearance of graphite. As the content of Y2O3 in the carbon preform increases, the prepared RBSC accelerates the SiC conversion reaction, increasing the density and decreasing the pores, resulting in densification. The dense RBSC obtained by reaction sintering at 1,500 ℃ for 2 hours from a carbon preform with 2.0 wt% Y2O3 added has 0.20 % apparent porosity and 96.9 % relative density.

Electrochemical Treatment of Dye Wastewater Using Fe, RuO2/Ti, PtO2/Ti, IrO2/Ti and Graphite Electrodes (RuO2/Ti, PtO2/Ti, IrO2/Ti 및 흑연전극을 이용한 염료폐수의 전기화학적 처리)

  • Kim, A Ram;Park, Hyun Jung;Won, Yong Sun;Lee, Tae Yoon;Lee, Jae Keun;Lim, Jun Heok
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.16-28
    • /
    • 2016
  • Textile industry is considered as one of the most polluting sectors in terms of effluent composition and volume of discharge. It is well known that the effluents from textile dying industry contain not only chromatic substances but also large amounts of organic compounds and insolubles. The azo dyes generate huge amount of pollutions among many types of pigments. In general, the electrochemical treatments, separating colors and organic materials by oxidation and reduction on electrode surfaces, are regarded as simpler and faster processes for removal of pollutants compared to other wastewater treatments. In this paper the electrochemical degradation characteristics of dye wastewater containing CI Direct Blue 15 were analyzed. The experiments were performed with various anode materials, such as RuO2/Ti, PtO2/Ti, IrO2/Ti and graphite, with stainless steel for cathode. The optimal anode material was located by changing operating conditions like electrolyte concentration, current density, reaction temperature and initial pH. The degradation efficiency of dye wastewater increased in proportion to the electrolyte concentration and the current density for all anode materials, while the temperature effect was dependent on the kind. The performance orders of anode materials were RuO2/Ti > PtO2/Ti > IrO2/Ti > graphite in acid condition and RuO2/Ti > IrO2/Ti > PtO2/Ti > graphite in neutral and basic conditions. As a result, RuO2/Ti demonstrated the best performance as an anode material for the electrochemical treatment of dye wastewater.

EFFECT OF ADDED Si ON DENSIFICATION OF Ni-AI INTERMETALLIC COATING ON SPHEROIDAL GRAPHITE CAST IRON SUBSTRATES

  • Kim, Tetsuro ata;Keisuke Uenishi;Akira Ikenaga;Kojiro F. Kobayashi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.726-731
    • /
    • 2002
  • Reaction synthesis is a process to form ceramics, intermetallics and their composites from elemental powder mixture. Application of this process to a surface modification techniques has a possibilities to enable the process at a lower temperature or for a shorter time, although synthesized materials are likely to include voids and unreacted elements. This paper intend to examine the effect of Si addition to the mixture of Al and Ni on the densification of synthesized Ni-Al intermetallic compounds and to evaluate the surface properties of obtained coatings. By the Si addition, exothermic reaction temperature to form Ni-Al intermetallic was lowered to be below the melting point of Al. Si soluted $Al_3$Ni$_2$, $Al_3$Ni and $Al_{6}$Ni$_3$Si were mainly formed in the coating layer when powder mixture was heated to 973K for 300s. Besides, densification was enhanced by increasing hot press pressure, Si additions and heating rate. When the composition of eutectic Al-Si reaches 78%, void ratio of sintered compact reduced to 0.4%. It is caused by higher flowability of Al-Si liquid phase generated and its infiltration into the void. Since the hardness of NiAl(Si) compound (about 600HV) formed in the coating layer is higher than that of Ni-Al compound (about 400HV), coating layer with high density and superior wear property is obtained by hot press using reaction synthesis from Al-Ni-Si powder mixture.

  • PDF

Surface structure and critical load of thin metal films on SiC substrate (SiC 기판상의 금속박막의 표면구조 및 임계하중)

  • 임창성
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.358-369
    • /
    • 1995
  • Surface structure and adhesion by the reaction between thin metal films and SiC were studied at temperatures between 550 and $1450^{\circ}C$ for various times. The reaction with the formation of various silicides was initially observed above $850^{\circ}C$ for SiC/Co system and $650^{\circ}C$ for SiC/Ni system. The cobalt reacted with SiC and consumed completely at $1050^{\circ}C$ for 0.5 h and the nickel at $950^{\circ}C$ for 2 h. The observed CoSi phase in SiC/Co and Ni$_2$Si phase in SiC/Ni are thermodynamically stable in the reaction zone up to 125$0^{\circ}C$ and $1050^{\circ}C$ respectively. Carbon was crystallized as graphite above $1450^{\circ}C$ for SiC/Co reaction surface and $1250^{\circ}C$ for SiC/Ni. The critical loads of the thin metal films on SiC substrate were qualitatively compared in terms of the scratch test method. At temperatures between 850 and $1050^{\circ}C$, relatively higher values of 20~33 N were observed for SiC/Ni couples.

  • PDF

Interface formation and thermodynamics between SiC and thin metal films (SiC와 금속박막간의 계면형성 및 열역학)

  • Chang-Sung Lim;Kwang-Bo Shim;Dong-Woo Shin;Keun-Ho Auh
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.62-72
    • /
    • 1996
  • The interface formation and reaction-product morphology between SiC and thin metal films were studied at temperatures between 550 and $1450^{\circ}C$ for various times. The typical reaction layer sequence was CoSi/CoSi+C/CoSi/CoSi+C/ $\cdots$ /SiC reaction at 1050 and $1250^{\circ}C$ for 2 h, while $Ni_2Si/Ni_2Si+C/Ni_2Si/Ni_2Si+C/ {\cdots} /SiC$ at 950 and 105$0^{\circ}C$ for 2 h. Carbon precipitated preferentially on the outer surface and crystallized as graphite above $1450^{\circ}C$ for SiC/Co reaction zone and $1250^{\circ}C$ for SiC/Ni. The mechanism of the periodic band structure formation with carbon precipitation behaviour was discussed in terms of thermodynamic considerations.

  • PDF

RBSC Prepared by Si Melt Infiltration into the Y2O3 Added Carbon Preform (Y2O3 첨가 탄소 프리폼에 Si 용융 침투에 의해 제조한 반응 소결 탄화규소)

  • Jang, Min-Ho;Cho, Kyeong-Sik
    • Journal of Powder Materials
    • /
    • v.28 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • The conversion of carbon preforms to dense SiC by liquid infiltration is a prospectively low-cost and reliable method of forming SiC-Si composites with complex shapes and high densities. Si powder was coated on top of a 2.0wt.% Y2O3-added carbon preform, and reaction bonded silicon carbide (RBSC) was prepared by infiltrating molten Si at 1,450℃ for 1-8 h. Reactive sintering of the Y2O3-free carbon preform caused Si to be pushed to one side, thereby forming cracking defects. However, when prepared from the Y2O3-added carbon preform, a SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C → SiC reaction at 1,450℃, 3C and 6H SiC phases, crystalline Si, and Y2O3 were generated based on XRD analysis, without the appearance of graphite. The RBSC prepared from the Y2O3-added carbon preform was densified by increasing the density and decreasing the porosity as the holding time increased at 1,450℃. Dense RBSC, which was reaction sintered at 1,450℃ for 4 h from the 2.0wt.% Y2O3-added carbon preform, had an apparent porosity of 0.11% and a relative density of 96.8%.

Measurement of the applicability of various experimental materials in a medically relevant reactor neutron source part two: Study of H3BO3 and B-DTPA under neutron irradiation

  • Ezddin Hutli;Peter Zagyvai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2419-2431
    • /
    • 2023
  • Experiments related to Boron Neutron Capture Therapy (BNCT) accomplished at the Institute of Nuclear Techniques (INT), Budapest University of Technology and Economics (TUB) are presented. Relevant investigations are required before designing BNCT for vivo applications. Samples of relevant boron compounds (H3BO3, BDTPA) usually employed in BNCT were investigated with neutron beam. Channel #5 in the research reactor (100 kW) of INT-TUB provides the neutron beam. Boron samples are mounted on a carrier for neutron irradiation. The particle attenuation of several carrier materials was investigated, and the one with the lowest attenuation was selected. The effects of boron compound type, mass, and compound phase state were also investigated. To detect the emitted charged particles, a traditional ZnS(Ag) detector was employed. The neutron beam's interaction with the detector-detecting layer is investigated. Graphite (as a moderator) was employed to change the neutron beam's characteristics. The fast neutron beam was also thermalized by placing a portable fast neutron source in a paraffin container and irradiating the H3BO3. The obtained results suggest that the direct measurement approach appears to be insufficiently sensitive for determining the radiation dose committed by the Alpha particles from the 10B (n,α) reaction. As a result, a new approach must be used.

Glucose Oxidase-Coated ZnO Nanowires for Glucose Sensor Applications

  • Noh, Kyung-Min;Sung, Yun-Mo
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.669-672
    • /
    • 2008
  • Well-aligned Zinc oxide (ZnO) nanowires were synthesized on silicon substrates by a carbothermal evaporation method using a mixture of ZnO and graphite powder with Au thin film was used as a catalyst. The XRD results showed that as-prepared product is the hexagonal wurzite ZnO nanostructure and SEM images demonstrated that ZnO nanowires had been grown along the [0001] direction with hexagonal cross section. As-grown ZnO nanowires were coated with glucose oxidase (GOx) for glucose sensing. Glucose converted into gluconic acid by reaction with GOx and two electrons are generated. They transfer into ZnO nanowires due to the electric force between electrons and the positively charged ZnO nanostructures in PBS. Photoluminescence (PL) spectroscopy was employed for investigating the movements of electrons, and the peak PL intensity increased with the glucose concentration and became saturated when the glucose concentration is above 10 mM. These results demonstrate that ZnO nanostructures have potential applications in biosensors.

The Synthesis of Diamond Thin Films by MPECVD Using Organic Compounds (유기 화합물을 이용한 MPECVD에 의한 다이아몬드 박막 합성)

  • Ku, Ja-Chun;Oh, Jeong-Seob;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.97-100
    • /
    • 1990
  • Diamond thin films were synthesized by the MPECVD (Microwave Enhanced Chemical Deposition) using the mixture of the hydrogen and organic compounds($CH_3COCH_3$, $CH_3OH$). In X-ray Diffraction, the d values of all the deposits on the Si substrates with the experimental conditions coincide with those of natural diamond in POD (Powder Diffraction Data). The changes of the morphology of all the deposits were examined by SEM. The amount of amorphous carbon or graphite in the diamond films were increased as the acetone concentration was increased. The morphology of the diamond particles can be changed from ball-like to euhedral by adding the small amount of the methanol in the reaction gases of the high acetone concentration.

  • PDF

Low Pressure Chemical Vapor Deposition of Silicon Carbide (탄화규소의 저압 화학증착)

  • 송진수;김영욱;김동주;최두진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.257-264
    • /
    • 1994
  • The objectives of this study were to develop the low pressure chemical vapor deposition(LPCVD) process of SiC and to fabricate pure and dense SiC layer onto graphite substrate at low temperature. The deposition experiments were performed using the MTS-H2 system (30 torr) in the deposition temperature ranging from 100$0^{\circ}C$ to 120$0^{\circ}C$. The deposition rate of SiC was increased with the temperature. The rate controlling step can be classified from calculated results of the apparent thermal activation energy as follows; surface reaction below 110$0^{\circ}C$ and gas phase diffusion through a stagnant layer over 110$0^{\circ}C$. The deposited layer was $\beta$-SiC with a preferred orientation of (111) and the strongly faceted SiC deposits were observed over 115$0^{\circ}C$.

  • PDF