• 제목/요약/키워드: Graphite Nodule

검색결과 18건 처리시간 0.029초

CV 흑연주철의 기계적 성질에 미치는 경질의 제2상의 영향 (The Effect of Harder Second Phase on Mechanical Properties of Compacted/Vermicular Graphite Cast Iron)

  • 박윤우
    • 한국주조공학회지
    • /
    • 제19권1호
    • /
    • pp.84-90
    • /
    • 1999
  • In this study, CV cast iron was reverse transformed to produce harder second phase surrounding graphite nodules, and then the microstructure and related mechanical properties of the reverse transformed CV cast iron were investigated by using optical microscopy and by carrying out hardness, tension and impact test. The formation of hard second phase surrounding graphite nodules increased the hardness in CV cast iron. The marked increase in hardness was resulted from the formation of martensite surrounding graphite nodule. It is expected from these results that the formation of martensite surrounding graphite nodule would improve the wear resistance of CV cast iron. The formation of both martensite and pearlite surrounding graphite nodule improved the tensile properties. Impact properties were decreased with increasing the volume fraction of hard second phase. However, the reduced impact properties could be recovered through phase transformation of martensite into pearlite and sorbite by tempering.

  • PDF

A Study on the Effects of Artifacts on Fatigue Limit of Ductile Cast Iron with Ferritic Structure

  • Kim, Jin-Hak;Kim, Min-Gun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1021-1027
    • /
    • 2000
  • In this study, fatigue tests were performed to examine the effects of micro drill hole on fatigue limit of as cast and austempered ductile cast iron (ADI) using the rotary bending fatigue tester. As results, micro drill holes ($diameter{\leq}0.4mm$) did not influence the fatigue limit of ADI, compared to annealed ductile cast iron; the critical defect size of crack initiation, in ADI was larger than as cast. If the ${\sqrt{area}}$ of micro drill hole and graphite nodule in ADI are comparable, crack initiates at the graphite nodule. When the ruggedness developes through austempering treatment process, microstructure on crack initiation at micro drill hole is tougher than that of as cast ductile cast iron.

  • PDF

희토류원소에 의한 박육구상흑연주철품의 조직변화 (Effect of Rare Earth Elements on the Microstructures of Thin-Wall Ductile Iron Castings)

  • 김지영;최준오;박성택;한윤성;최창옥
    • 한국주조공학회지
    • /
    • 제23권4호
    • /
    • pp.187-194
    • /
    • 2003
  • The effect of rare earth elements (R.E)(from 0.0 to 0.04%) on the microstructure formation and mechanical properties of thin-wall ductile iron castings were investigated. Tensile strength and hardness were decreased with an addition of up to 0.03% rare-earth elements. After addition of more than 0.03%, those were increased. Graphite nodule sizes were the finest, nodule count was the highst regardless of thickness and volume fraction of ferrite was the largest when that was 0.02%. However, the nodule count was decreased with increasing R.E. Futhermore. nodule size increased with increasing thickness and the volume fraction of ferrite decreased as that was increased. Nodularity was increased regardless of the thickness as that was increased. The castings of minium thickness up to 3 mm was possible without the formation of chill.

오스템퍼링처리한 구상흑연주철의 피로한도에 미치는 인공결함의 영향 (Influence of Artificial Defect on Fatigue Limit in Austempered Ductile Iron)

  • 김민건;김진학
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1922-1928
    • /
    • 1999
  • Rotary bending fatigue tests were carried out to investigate the influence of artificial defects on fatigue limit in annealed and austempered ductile iron. Obtained main results are as follows : (1) Artificial defect(micro hole type, dia.<0.4 mm) on specimen surface did not bring about a obvious reduction of fatigue limit in austempered ductile iron(ADI) as compared with annealed ductile iron. (2) According to the investigation of $\sqrt{area}_c$ which is the critical defect size to crack initiation at artificial defect, $\sqrt{area}_c$ of ADI is larger than that of annealed ductile iron. This shows that the situation of crack initiation at artificial defect in ADI is more difficult in comparison with annealed ductile iron. (3) One of the reasons for the low rate of crack initiation from artificial defect in ADI is that the resistance of matrix to crack initiation is higher than that of annealed ductile iron. (4) In case that the $\sqrt{area}$ of artificial defect and graphite nodule is the same, the rate of crack initiation from graphite nodule is higher than that from artificial defect. This reason is that the serious ruggedness around graphite nodule is formed by austempering treatment.

오스템퍼링처리한 구상흑연주철에서 인공결함에 대한 피로한도 민감도에 관한 연구 (A Study on the Artificial Defect Sensitivity of Fatigue Limit in Austempered Ductile Iron)

  • 김민건;김진학
    • 열처리공학회지
    • /
    • 제12권3호
    • /
    • pp.215-220
    • /
    • 1999
  • Rotary bending fatigue tests were carried out to investigate the artificial defect sensitivity of fatigue limit in annealed and austempered ductile irons. Artificial defect(hole, diameter${\leq}0.4mm$) machined on specimen surface did not bring about an obvious reduction of fatigue limit in austempered ductile iron as compared with annealed. As a result of investigation on $\sqrt{area}$ c which is the critical artificial defect size. $\sqrt{area}$ c of austempered ductile iron is larger than that of annealed. This means that the crack initiation at artificial defect in austempered ductile iron is more difficult in comparison with annealed. In case that the $\sqrt{area}$ c of artificial defect and graphite nodule are same, the rate of crack initiation for graphite nodule is higher than that of artificial defect.

  • PDF

고주파유도로를 이용한 초급속열처리 구상흑연주철의 피로파괴특성 (Fatigue Fracture Behavior in Super-Rapid induction Quenched Spheroidal Graphite Cast Iron)

  • 지정근;김진학;김민건
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.25-29
    • /
    • 1999
  • Rotary bending fatigue tests were carried out to investigate the fatigue behavior of high performance ductile cast iron experienced super rapid induction heat treatment. The effect of super rapid induction treatment on fatigue limit was experimentally examined with the special focus on the variation surface microstructure and the fatigue crack initiation and propagation through fractography. Main results obtained are as follows. By super rapid induction treatment in FCD500, the martensite structure obtained through conventional quenching heat treatment was confirmed on the specimen surface. The fatigue crack initiation in the hardened surface layer was restricted by the martensite structure and compressive residual stress. Thus, it could be interpreted that the initiation stress would be increased by the improvement of surface structure. The fatigue crack propagation in the hardened layer was retarded by the presence of the globular shape martensite around the graphite nodule and compressive residual stress. The crack propagation path has shown zigzag pattern in the hardened surface layer.

  • PDF

초급속열처리 구상흑연주철 FCD500의 피로파괴특성 (Fatigue Fracture Behavior of Spheroidal Graphite Cast Iron FCD500 by Super-Rapid induction Quenching)

  • 지정근;김민건;김진학;김정두
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.596-601
    • /
    • 2002
  • Rotary bending fatigue tests were carried out to investigate the fatigue characteristics of high performance ductile cast iron experienced super rapid induction treatment. The influence of super rapid induction treatment on fatigue limit was experimentally examined with the special focus on the variation of surface microstructure and the fatigue crack initiation and propagation through fractography. Main results obtained are as follows. By super rapid induction treatment in FCD500, the martensite structure obtained through conventional heat treatment was confirmed on the specimen surface. The fatigue crack initiation in the hardened surface layer was restricted by the martensite structure and compressive residual stress. Thus, it could be interpreted that the initiation stress would be increased by improved structure in the surface. The fatigue crack propagation in the hardened layer was retarded by the presence of the globular shape martensite around the graphite nodule and compressive residual stress and the crack propagation behavior has zigzag pattern in the hardened surface layer.

옥천계(沃川系) 흑색(黑色)슬레이트내(內) 부존(賦存)하는 저품질(低品質) 우라늄광석(鑛石)에 대(對)한 광물학적(鑛物學的) 연구(硏究) (Mineralogy of Low-Grade Uranium Ores in the Black Slate of the Ogcheon Group, Korea)

  • 이동진
    • 자원환경지질
    • /
    • 제19권2호
    • /
    • pp.133-146
    • /
    • 1986
  • Primary uraninite and secondary uranium minerals such as torbernite, metatorbernite, tyuyamunite, metatyuyamunite, autunite and metaautunite have been identified from various types of uranium ores. Uranium minerals occur as accessory minerals in both the primary and secondary ores. Low·grade uranium ores consist of various kinds of primary and secondary minerals. Major constituent minerals of primary uranium ores are graphite. quartz. Ba-feldspar and sericite/muscovite, and accessories are calcite, chlorite, fluorapatite, barite, diopside, sphene, rutile, biotite, laumontite, heulandite, pyrite, sphalerite and chalcopyrite, and secondary minerals consist of kaolinite, gypsum and goethite. Uraninite grains occur as microscopic very fine-grained anhedral to euhedral disseminated particles in the graphitic matrix, showing well·stratified or zonal distribution of uranium on auto-radiographs of low-grade uranium ores. Some uraninite grains are closely associated with very fine-grained pyrite aggregates, showing an elliptical form parallel to the schistosity. Some uraninite grains include extremely fine-grained pyrite particle. Sphalerite and pyrite are often associated with uraninite in graphite-fluorapatite nodule. The size of uraninite is $2{\mu}m$ to $20{\mu}m$ in diameter. Low-grade uranium ores are classified into 5 types on the basis of geometrical pattern of mineralization. They are massive, banded, nodular, quartz or sulfide veinlet-rich and cavity filling types. Well-developed alternation of uranium-rich and uranium-poor layers, concentric distribution of uranium in graphite-fluorapatite nodule and geopetal fabrics due to the load cast of the nodule suggest that the uranium was originally deposited syngenetically. Uraninite crystals might have been formed from organo-uranium complex during diagenesis and recrystallized by metamorphism. Secondary uranium minerals such as torbernite, tyuyamunite and autunite have been formed by supergene leaching of primary ores and subsequent crystallization in cavities.

  • PDF

주철의 피로전파거동에 미치는 미세조직의 영향 (The Effects of the Microstructures on the Fatigue Crack Propagation Behaviors of Cast Irons)

  • 김석원;박진성;이형철;김동건;우기도
    • 한국주조공학회지
    • /
    • 제25권1호
    • /
    • pp.16-22
    • /
    • 2005
  • This study aims to investigate the effects of the microstructures and nodule type on the fatigue characteristics of cast iron. Fatigue tests were carried out in tension-tension mode using a servo-hydraulic testing machine with load control mode operating at a frequency of 15 Hz. The tests were conducted at stress ratio R=Kmin/Kmax, of 0.1. Initial crack ${\Dalta}K$ values were highly performed with increase in tensile strength of DCI fatigue specimens. ${\Dalta}K_{th}$ region, fatigue crack propagation was primarily advanced through cell boundary and in periphery of near nodule. Fatigue crack propagation rate of D2 consisted with 2Phase(Ferrite+Pearlite) was slow due to crack closure enhanced by crack deflection and occurred crack branching. The generation of crack branch was occurred due to interaction of crack-nodule. At Threshold and Paris zone, the fractographs of the fatigue fracture surface for DCI show typical striations of a ductile fracture and isolated cleavage planes near graphite. The effect of microstructure on fatigue crack propagation of GC strongly depends on the type of flake. The generation of crack branch occurred due to interaction of crack-nodule. The fractographs of the fatigue fracture surface for GC show cleavage plane along the flake graphite.

주철의 흑연구상화에 미치는 기포의 영향 (The Effects of Gas Bubbles on the Graphite Spheroidization in Cast Iron)

  • 박실라;최답천;김관휴
    • 한국주조공학회지
    • /
    • 제9권6호
    • /
    • pp.474-482
    • /
    • 1989
  • The aim of this research is to investigate the effects of gas bubbles on the formation of spheroidal graphite in cast iron, Fe-Si-8%Mg alloy, mischmetal hydride($MmH_2$) and $CaCO_3$, which discharge various amounts of Mg, $H_2$ and $Co_2$, gases, were added to Fe-3.9% C-2.0%Si melt and the melt was innoculated with 0.3wt% of 75%Fe-Si. The spheroidal graphites and/or compacted vermicular graphites were produced with more than 0.625cc/g of Mg gas or more than 0.3125cc/g of $H_2$ gas while $CO_2$ gas did not contribute to graphite spheroidization. Nodule counts increased with the amount of Fe-Si-Mg added ; but they decreased with the amount of $MmH_2$ added because the number of effective gas bubbles decrease with the increase in Mm residual. The bull's eye structure was revealed with 0.625cc/g, 1.25cc/g of Mg and 0.3125cc/g of $H_2$ ; the ledeburite structure was revealed with more than 0.625cc/g of $H_2$.

  • PDF