• Title/Summary/Keyword: Graphite Isotope Ratio Method

Search Result 3, Processing Time 0.018 seconds

Verification of Graphite Isotope Ratio Method Combined With Polynomial Regression for the Estimation of Cumulative Plutonium Production in a Graphite-Moderated Reactor

  • Kim, Kyeongwon;Han, Jinseok;Lee, Hyun Chul;Jang, Junkyung;Lee, Deokjung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.447-457
    • /
    • 2021
  • Graphite Isotope Ratio Method (GIRM) can be used to estimate plutonium production in a graphite-moderated reactor. This study presents verification results for the GIRM combined with a 3-D polynomial regression function to estimate cumulative plutonium production in a graphite-moderated reactor. Using the 3-D Monte-Carlo method, verification was done by comparing the cumulative plutonium production with the GIRM. The GIRM can estimate plutonium production for specific sampling points using a function that is based on an isotope ratio of impurity elements. In this study, the 10B/11B isotope ratio was chosen and calculated for sampling points. Then, 3-D polynomial regression was used to derive a function that represents a whole core cumulative plutonium production map. To verify the accuracy of the GIRM with polynomial regression, the reference value of plutonium production was calculated using a Monte-Carlo code, MCS, up to 4250 days of depletion. Moreover, the amount of plutonium produced in certain axial layers and fuel pins at 1250, 2250, and 3250 days of depletion was obtained and used for additional verification. As a result, the difference in the total cumulative plutonium production based on the MCS and GIRM results was found below 3.1% with regard to the root mean square (RMS) error.

A Suitability Study on the Indicator Isotopes for Graphite Isotope Ratio Method (GIRM) (흑연 동위원소 비율법의 지표 동위 원소 적합성 연구)

  • Han, Jinseok;Jang, Junkyung;Lee, Hyun Chul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.83-90
    • /
    • 2020
  • The Graphite Isotope Ratio Method (GIRM) can verify non-proliferation of nuclear weapon by estimating the total plutonium production in a graphite-moderated reactor. Using the reactor, plutonium is generated and accumulated through the 238U neutron capture reaction, and impurities in the graphite are converted to nuclides due to the nuclear reaction. Therefore, the amount of plutonium production and concentration of the impurities are correlated. However, the plutonium production cannot be predicted using only the absolute concentration of the impurities. It can only be predicted when the initial concentration of the impurities is obtained because the concentration, at a certain time, depends on it. Nevertheless, the ratios of the isotopes in an element are known regardless of the impurity of an element in the graphite moderator. Thus, the correlation between the isotope ratio and amount of plutonium produced helps predict plutonium production in a graphite-moderated reactor. Boron, Lithium, Chlorine, Titanium, and Uranium are known as indicator elements in the GIRM. To assess whether the correlation between the indicator isotope and amount of plutonium produced is independent of the initial concentration of the impurities, four different impurity compositions of graphite were used. 10B/11B, 36Cl/35Cl, 48Ti/49Ti, and 235U/238U had a consistent correlation with the cumulative plutonium production, regardless of the initial impurity concentration of the graphite, because these isotopes were not generated through the nuclear reaction of other elements. On the other hand, the correlation between 6Li/7Li and plutonium production depended on the initial concentration of the impurities in graphite. Although 7Li can be produced through the neutron capture reaction of 6Li, the (n, α) reaction of 10B was the major source of 7Li. Therefore, the initial concentration of 10B affected the production of 7Li, making Li unsuitable as an indicator element for the GIRM.

Uranium Isotopic Ratio Analysis of U-Bearing Particulates By SIMS in CIAE

  • Yonggang, Zhao
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.257-259
    • /
    • 2004
  • In this paper measurement method of uranium isotope ratio of uranium-bearing particles in swipe samples was introduced; Swipe sample screening program was proposed on the basis of studying various destructive assay and non-destructive assays. Scanning electron microscope(SEM) equipped with an energy dispersive X-ray fluorescence(XRF) system was applied to locate the deposited uranium-containing particles on the graphite support, particle's composition and size can be identified. Some isotope ratio results were compared with those of other bulk analytical methods; By measuring the same prepared sample, we got the U-particle isotopic ratio data similar to those from IAEA NWAL, indicating that our operation parameters and experimental conditions are viable and can be used for measurement of U-particle isotopic ratio from swipe samples.

  • PDF