• Title/Summary/Keyword: Graphite/epoxy composite

Search Result 113, Processing Time 0.023 seconds

Determination of Elastic Work Factor of Graphite/Epoxy Composites Subjected to Compressive Loading under Hydrostatic Pressure Environment (정수압 환경에서 압축하중을 받는 Graphite/Epoxy 적층복합재의 탄성일인자 결정)

  • 신명근;이경엽;이중희
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.14-18
    • /
    • 2002
  • In the present study, we investigated the effects or hydrostatic pressure and stacking sequence on the elastic work factor to determine compressive fracture toughness of graphite/epoxy laminated composites in the hydrostatic pressure environment. The stacking sequences used were unidirectional. $\textrm{[}0^{\circ}\textrm{]}_{88}$ and multi-directional, $\textrm{[}0^{\circ}/\pm/45^{\circ}/90^{\circ}\textrm{]}_{11s}$. The hydrostatic pressures applied for a $\textrm{[}0^{\circ}\textrm{]}_{88}$ case were 0.1 MPa, 70MPa, 140MPa. and 200MPa. The hydrostatic pressures applied for a $\textrm{[}0^{\circ}/\pm/45^{\circ}/90^{\circ}\textrm{]}_{11s}$ case were 0.1MPa, 100MPa, 200MPa, and 300MPa. It was found that the elastic work factor was not affected by the hydrostatic pressure and the stacking sequence. Also, it was found that the elastic work factor decreased in a linear fashion with delamination length.

A Study on Frequency Characteristics of Impact Induced Damage Signals of Composite Laminates as the Incident Angle of an FBG sensor (복합재 충격손상신호의 FBG센서 입사각도에 따른 주파수분포 특성에 관한 연구)

  • Bang, Hyung-Jun;Song, Ji-Yong;Kim, Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.235-239
    • /
    • 2005
  • In this research, we investigated the frequency characteristic of low-velocity impact induced damage signals on graphite/epoxy composite laminates using high-speed fiber Bragg grating(FBG) sensor system. Appling the FBG sensors to damage assessment, we need to study the response of FBG sensors as the damage signals of the different incident angles because FBG shows different directional sensitivity. In order to discriminate an impact induced damage signal from that of undamaged case, drop impacts with different energies were applied to the composite panel with different incident angle to the FBG sensor. Finally, detected impact signals were compared using frequency distributions of wavelet detail components in order to find distinctive signal characteristics of composites delamination.

  • PDF

A study on structural health monitoring of composite structures by using embedded fiber Bragg grating sensors (광섬유 브래그 격자 센서를 이용한 복합재료 구조물의 건전성 감시 기법 개발에 관한 연구)

  • Kim Won-Seok;Lee Jung-Ju
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.107-110
    • /
    • 2004
  • In this paper, a new structural health monitoring technique for composite laminates through the use of embedded fiber Bragg grating (FBG) sensors is presented. The method traces the ply stress states of a laminate and compares them with failure criteria during the service time of structures. The ply stress state of every ply composing the composite laminate can be obtained using classical lamination theory by embedded FBG sensors in the laminate. Graphite/epoxy laminate specimens, embedded with three FBG sensors, were fabricated. Tension tests were performed to evaluate the ply stress states tracing technique. Experimental results show that laminates experience fracture when the ply stress states are over the boundaries of failure criteria. In this method, critical damage can be detected by the ply stress states which are close to the boundaries of the failure criteria.

  • PDF

Aging Characteristics of Composite Materials in Carbody of Tilting Train using Accelerated Aging Test (가속노화시험을 이용한 틸팅차량 차체 복합재의 노화특성)

  • Yoon Sung-Ho;Kim Yong-Goo;Nam Jung-pyo;Shin Kwang-Bok;Koo Dong-Hoe
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.333-338
    • /
    • 2003
  • Polymeric composite structures used in ground transportation applications such as the carbody of tilting train may be exposed to a ground environmental conditions during long-term missions. In this study, the degradation of mechanical and physical properties of graphite/epoxy composite and glass fabric/phenol composite under ground environmental conditions was investigated. Accelerated environmental conditions of ultraviolet radiation, temperature, and moisture were considered. Several types of specimens were used to investigate the effects of environmental conditions on mechanical properties of the composites. Also, storage shear modulus, loss shear modulus, and tan 8 were measured as a function of exposure times through a dynamic mechanical analyzer. Finally, composite surfaces exposed to environmental conditions were examined using a scanning electron microscope.

  • PDF

Low-velocity Impact Damage of a Thick Graphite/Epoxy Case (Graphite/Epoxy로 만든 두꺼운 관의 저속 충격손상에 관한 연구)

  • 김형원;윤영주;나성엽
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.31-38
    • /
    • 2000
  • Pressure vessels by composite materials were damaged sometimes during manufacturing or assembling. The state and the size of damage by low-velocity tests were investigated in this paper. Impactors of various masses and various tup shapes were dropped freely in the range of 120mm height to 700mm height. Compared with hemispherical tup of 12.7mm diameter, for hemispherical tup of 25.4mm diameter the size of surface dent was smaller but the size of delamination was bigger.

  • PDF

Effects of Combined Environmental Factors on Mechanical and Thermal Analysis Properties of Graphite/Epoxy Composites (복합적인 환경인자가 탄소섬유강화 복합재의 기계적 및 열분석 특성에 미치는 영향)

  • Lee, Sang-Jin;Lee, Jong-Keun;Yoon, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1416-1425
    • /
    • 2002
  • In this study, the effects of combined environmental factors on mechanical and thermal analysis properties of graphite/epoxy composites were evaluated by the use of an accelerated aging test. Environmental factors such as temperature, moisture. and ultraviolet were considered. A xenon-arc lamp was utilized for ultraviolet light. and exposure times of up to 3000 hours were applied. Several types of specimens - tensile. bending, and shear specimens those are transverse to the fiber direction, and bending specimens those are parallel to the tiber direction - were used to investigate the effects of environmental factors on mechanical properties of the composites. Also, glass transition temperature, storage shear modulus, loss shear modulus, and tan ${\delta}$ were measured as a function of exposure times through a dynamic mechanical analyzer. In addition. a suitable testing method for determining the effect of environmental factors on mechanical properties is suggested by comparing the results from using two different types of strain measuring sensors. Finally, composite surfaces exposed to environmental factors were examined using a scanning electron microscope.

Fracture Toughness Improvement of Graphite/Epoxy Composite by Intermittent Interlaminar Bonding (간헐적인 층간접착 을 이용한 Graphite/Epoxy 복합재료 의 파괴인성 개선)

  • 임승규;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.425-434
    • /
    • 1984
  • The concept of intermittent interlaminar bonding is investigated as a means of improving the fracture toughness of cross-ply Gr/Ep composites without significant loss of tensile strength and modulus. The concept of linear elastic fracture mechanics(LEFM)is used to study the effects of strong bonded area and bonding composites. The experimental results indicate that the fracture toughness and notch strength of intermittent interlaminar bonded composities are improved and the tensile strength only decreased by 3-8% in comparison to those of the fully bonded composites. Damage zones around the crack tip are detected by the modified X-Ray non-destructive testing technique and the fractography. The improvement of toughness is explained based on the damage zones. The mechanisms of damage zone are shown to be caused by subcrack along the fiber on the 0.deg. ply, matrix cracking along the fiber on the 90.deg. ply, interlaminar delamination, and ply pull-out of the 0.deg. ply.

Thermal Strain and Temperature Measurements of Structures by Using Fiber-Optic Sensors (광섬유 센서를 이용한 구조물의 열변형 및 온도 측정)

  • 강동훈;강현규;류치영;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.184-189
    • /
    • 2000
  • Two types of fiber-optic sensors, EFPI(extrinsic Fabry-Perot interferometer) and FBG(fiber Bragg grating), have been investigated for measurement of thermal strain and temperature. The EFPI sensor is only for measurement of thermal strain and the FBG sensor is for simultaneous measurement of thermal strain and temperature. FBG temperature sensor was developed to measure strain-independent temperature. This sensor configuration consists of a single-fiber Bragg grating and capillary tube which makes it isolated from external strain. This sensor can then be used to compensate for the temperature cross sensitivity of a FBG strain sensor. These sensors are demonstrated by embedding them into a graphite/epoxy composite plate and by attaching them on aluminum rod and unsymmetric graphitelepoxy composite plate. All the tests were conducted in a thermal chamber with the temperature range $20-100^{\circ}C$. Results of strain measurements by fiber-optic sensors are compared with that from conventional resistive foil gauge attached on the surface.

  • PDF

Thermally-Induced Vibration Control of Rotating Composite Thin-Walled Blade (회전하는 복합재 블레이드의 열진동 해석 및 제어)

  • Jung, Hoe-Do;Na, Sung-Soo;Kwak, Mun-Kyu;Heo, Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1696-1701
    • /
    • 2003
  • This paper deals with a vibration control analysis of a rotating composite blade, modeled as a tapered thinwalled beam induced by heat flux. The displayed results reveal that the thermally induced vibration yields a detrimental repercussions upon their dynamic responses. The blade consists of host graphite epoxy laminate with surface and spanwise distributed transversely isotropic (PZT-4) sensors and actuators. The controller is implemented via the negative velocity and displacement feedback control methodology, which prove to overcome the deleterious effect associated with the thermally induced vibration. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, secondary warping, anisotropy of constituent materials, and rotary inertias.

  • PDF

Development of Carbon Composite Bipolar Plates for Vanadium Redox Flow Batteries

  • Lee, Nam Jin;Lee, Seung-Wook;Kim, Ki Jae;Kim, Jae-Hun;Park, Min-Sik;Jeong, Goojin;Kim, Young-Jun;Byun, Dongjin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3589-3592
    • /
    • 2012
  • Carbon composite bipolar plates with various carbon black contents were prepared by a compression molding method. The electrical conductivity and electrochemical stability of the bipolar plates have been evaluated. It is found that the electrical conductivity increases with increasing carbon black contents up to 15 wt %. When the carbon black contents are greater than 15 wt %, the electrical conductivity decreases because of a poor compatibility between epoxy resin and carbon black, and a weakening of compaction in the carbon composite bipolar plate. Based on the results, it could be concluded that there are optimum carbon black contents when preparing the carbon composite bipolar plate. Corrosion tests show that the carbon composite bipolar plate with 15 wt % carbon black exhibits better electrochemical stability than a graphite bipolar plate under a highly acidic condition. When the optimized carbon composite bipolar plate is applied to vanadium redox flow cells, the performance of flow cells with the carbon composite bipolar plate is comparable to that of flow cells with the graphite bipolar plate.