• Title/Summary/Keyword: Graphene hybrid

Search Result 101, Processing Time 0.03 seconds

Photocatalytic performance of graphene/Ag/TiO2 hybrid nanocomposites

  • Lee, Jong-Ho;Kim, In-Ki;Cho, Donghwan;Youn, Jeong-Il;Kim, Young-Jig;Oh, Han-Jun
    • Carbon letters
    • /
    • v.16 no.4
    • /
    • pp.247-254
    • /
    • 2015
  • To improve photocatalytic efficiency, graphene/Ag/TiO2 nanotube catalyst was synthesized, and its surface characteristics and photocatalytic activity investigated. For deposition of Ag nanoparticles on the TiO2 nanotubes, a polymer compound containing CH3COOAg/poly(L-lactide) was utilized, and the silver particles were precipitated by reducing the silver ions during the annealing process. Graphene deposition on the Ag/TiO2 nanotubes was achieved using an electrophoretic deposition process. Based on the dye degradation results, it was determined that the photocatalytic efficiency was significantly affected by deposition of silver particles and graphene on the TiO2 catalyst. Highly efficient destruction of the dye was obtained with the new graphene/Ag/TiO2 nanotube photocatalyst. This may be attributed to a synergistic effect of the graphene and Ag nanoparticles on the TiO2 nanotubes.

Multiscale bending and free vibration analyses of functionally graded graphene platelet/ fiber composite beams

  • Garg, A.;Mukhopadhyay, T.;Chalak, H.D.;Belarbi, M.O.;Li, L.;Sahoo, R.
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.707-720
    • /
    • 2022
  • In the present work, bending and free vibration analyses of multilayered functionally graded (FG) graphene platelet (GPL) and fiber-reinforced hybrid composite beams are carried out using the parabolic function based shear deformation theory. Parabolic variation of transverse shear stress across the thickness of beam and transverse shear stress-free conditions at top and bottom surfaces of the beam are considered, and the proposed formulation incorporates a transverse displacement field. The present theory works only with four unknowns and is computationally efficient. Hamilton's principle has been employed for deriving the governing equations. Analytical solutions are obtained for both the bending and free vibration problems in the present work considering different variations of GPLs and fibers distribution, namely, FG-X, FG-U, FG-Λ, and FG-O for beams having simply-supported boundary condition. First, the matrix is assumed to be strengthened using GPLs, and then the fibers are embedded. Multiscale modeling for material properties of functionally graded graphene platelet/fiber hybrid composites (FG-GPL/FHRC) is performed using Halpin-Tsai micromechanical model. The study reveals that the distributions of GPLs and fibers have significant impacts on the stresses, deflections, and natural frequencies of the beam. The number of layers and shape factors widely affect the behavior of FG-GPL-FHRC beams. The multilayered FG-GPL-FHRC beams turn out to be a good approximation to the FG beams without exhibiting the stress-channeling effects.

Preparation of Three-Dimensional Graphene/Metal Oxide Nanocomposites for Application of Supercapacitors (슈퍼커패시터 응용을 위한 3차원 그래핀/금속 산화물 나노복합체 제조)

  • Kim, Jung Won;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.521-525
    • /
    • 2015
  • Graphene-based electrode materials have been widely explored for supercapacitor applications due to their unique two-dimensional structure and properties. In particular, Three-dimensional (3D) graphene materials are of great importance for preparing electrode materials because they can provide large surface area, efficient and rapid electron and ion transfer, and mechanical stability. Recently, a number of 3D hybrid architecture of graphene/metal oxides have been developed to increase simultaneously energy and power densities of supercapacitors. This review presents the recent progress of 3D nanocomposites based on graphene and metal oxides. Preparation methods and structures of these 3D nanocomposites and their great potential in supercapacitor applications have been summarized.

A Study on the Effect of Graphene Substrate for Growth of Vanadium Dioxide Nanostructures (이산화바나듐 나노구조물의 성장에서 그래핀 기판의 영향에 관한 연구)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.95-100
    • /
    • 2018
  • The metal oxide/graphene nanocomposites are promising functional materials for high capacitive electrode material of secondary batteries, and high sensitive material of high performance gas sensors. In this study, vanadium dioxide($VO_2$) nanostructrures were grown on CVD graphene which was synthesized on Cu foil by thermal CVD, and exfoliated graphene which was exfoliated from highly oriented pyrolytic graphite(HOPG) using a vapor transport method. As results, $VO_2$ nanostructures on CVD graphene were grown preferential growth on abundant functional groups of graphene grain boundaries. The functional groups are served to nucleation site of $VO_2$ nanostructures. On the other hand, 2D & 3D $VO_2$ nanostructures were grown on exfoliated graphene due to uniformly distributed functional groups on exfoliated graphene surface. The characteristics of morphology controlled growth of $VO_2$/graphene nanocomposites would be applied to fabrication process for high capacitive electrode materials of secondary batteries, and high sensitive materials of gas sensors.

Modified Graphene Oxide-Based Adsorbents Toward Hybrid Membranes for Organic Dye Removal Application

  • Thi Sinh, Vo;Khin Moe, Lwin;Sun, Choi;Kyunghoon, Kim
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.402-411
    • /
    • 2022
  • In this study, the channels-contained hybrid membranes have been fabricated through the incorporation of glass fibers and GO sheets (GO/glass fibers, GG), or a mixture of chitosan/GO (CS/GO/glass fibers, CGG), as hybrid membranes using in organic dye removal. The material properties are well investigated the terms in the morphological, chemical, crystal, and thermal characterizations for verifying interactions in their formed structure. These hybrid membranes have been fitted well in pseudo-second order and Langmuir models that are associated with chemical adsorption and a monolayer approach, respectively. The highest adsorption ability of methylene blue and methyl orange reached 59.40 mg/g and 229.07 mg/g (GG); and 287.47 mg/g and 252.91 mg/g (CGG), which is more enhanced than that of previous GO-based other adsorbents. Moreover, the dye separation on these membranes could be favorable to superb sealing and trapping dye molecules from water instead of only the dye connection occurring on their surface, regarding the physically sieving effect. The membranes can also be reused within two and three adsorbing-desorbing cycles on the GG and CGG ones, respectively. These membranes can become future adsorbents to be applied for wastewater treatment due to their structural features.

Plasma Engineering for Nano-Materials

  • Kim, Seong-In;Shin, Myoung-Sun;Son, Byung-Koo;Song, Seok-Kyun;Choi, Sun-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.79-79
    • /
    • 2012
  • A high temperature and a low temperature plasma process technologies were developed and demonstrated for synthesis, hybrid formation, surface treatment and CVD engineering of nano powder. RF thermal plasma is used for synthesis of spherical nano particles in a diameter ranged from 10 nm to 100 nm. A variety of nano particules such as Si, Ni, has been synthesized. The diameter of the nano-particles can be controlled by RF plasma power, pressure, gas flow rate and raw material feed rate. A modified RF thermal plasma also produces nano hybrid materials with graphene. Hemispherical nano-materials such as Ag, Ni, Si, SiO2, Al2O3, size ranged from 30 to 100 nm, has been grown on graphene nanoplatelet surface. The coverage ranged from 0.1 to 0.7 has been achieved uniformly over the graphene surface. Low temperature AC plasma is developed for surface modification of nano-powder. In order to have a three dimensional and lengthy plasma treatment, a spiral type of reactor has been developed. A similar plasma reactor has been modfied for nano plasma CVD process. The reactor can be heated with halogen lamp.

  • PDF

D-space-controlled graphene oxide hybrid membrane-loaded SnO2 nanosheets for selective H2 detection

  • Jung, Ji-Won;Jang, Ji-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.376-380
    • /
    • 2021
  • The accurate detection of hydrogen gas molecules is considered to be important for industrial safety. However, the selective detection of the gas using semiconductive metal oxides (SMOs)-based sensors is challenging. Here, we describe the fabrication of H2 sensors in which a nanocellulose/graphene oxide (GO) hybrid membrane is attached to SnO2 nanosheets (NSs). One-dimensional (1D) nanocellulose fibrils are attached to the surface of GO NSs (GONC membrane) by mixing GO and nanocellulose in a solution. The as-prepared GONC membrane is employed as a sacrificial template for SnO2 NSs as well as a molecular sieving membrane for selective H2 filtration. The combination of GONC membrane and SnO2 NSs showed substantial selectivity to hydrogen gas (Rair / Rgas > 10 @ 0.8 % H2, 100 ℃) with noise level responses to interfering gases (H2S, CO, CH3COCH3, C2H5OH, and NO2). These remarkable sensing results are attributed mainly to the molecular sieving effect of the GONC membrane. These results can facilitate the development of a highly selective H2 detector using SMO sensors.

Fabrication of Silver Nanowire-Graphene Oxide Hybrid Transparent Conductive Thin Film with Improved Mechanical Stability (기계적 안정성이 향상된 은나노와이어-그래핀옥사이드 하이브리드 투명 전도성 박막의 제작)

  • Kim, Ju-Tae;Woo, Ju Yeon;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.903-909
    • /
    • 2015
  • In this study, we used GO (graphene oxide) in order to enhance the adhesion between Ag NWs (nanowires) and substrates. By using a mixture solution of GO and Ag NW, a vacuum filtration process was used to fabricate a 50nm diameter thin film. Next, by using a light annealing process, the mechanical and electrical stability of Ag NW network was improved without any other treatment. The physical properties of the Ag NW - GO hybrid transparent conductive thin film was characterized in terms of a bending test, resistance and transmittance test, and nanoscale imaging using field-emission scanning electron microscopy.

Effect of Hydrogen in Rapid Thermal Annealing on the Graphene-Zinc Oxide Electrode for Supercapacitor (슈퍼커패시터용 그래핀-산화아연 전극의 급속열처리에서 수소의 영향)

  • Jeong, Woo-Jun;Oh, Ye-Chan;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.123-129
    • /
    • 2019
  • With recent demand for the renewable energy resources, we conducted a research on the energy conversion and storage device of supercapacitor. The hybrid graphene-zinc oxide(GZO) electrodes for the supercapacitors (SCs) were fabricated and investigated. To increase the electrical conductivity of the GZO electrode, the rapid thermal annealing(RTA) in $Ar/H_2$(10%) atmosphere was applied and the effect was examined by comparing it with RTA at Ar atmosphere. In Raman spectroscopy, the electrodes annealed at 400? in $Ar/H_2$ atmosphere showed a lower ratio of D/G peak than that of annealed at Ar atmosphere, and had a larger specific capacitance(Sc) in the cyclic voltammetry(CV), and a lower the equivalent series resistance(ESR) in the electrochemical impedance spectroscopy(EIS). The reason seems to come from the better mixing of the graphene and zinc oxide by the RTA in $Ar/H_2$(10%).