• Title/Summary/Keyword: Graphene Technology

Search Result 582, Processing Time 0.026 seconds

Plasma Treatments to Forming Metal Contacts in Graphene FET

  • Choi, Min-Sup;Lee, Seung-Hwan;Lim, Yeong-Dae;Yoo, Won-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.121-121
    • /
    • 2011
  • Graphene formed by chemical vapor deposition was exposed to the various plasmas of Ar, O2, N2, and H2 to examine its effects on the bonding properties of graphene to metal. Upon the Ar plasma exposure of patterned graphene, the subsequently deposited metal electrodes remained intact, enabling successful fabrication of field effect transistor (FET) arrays. The effects of enhancing adhesion between graphene and metals were more evident from O2 plasmas than Ar, N2, and H2 plasmas, suggesting that chemical reaction of O radicals induces hydrophilic property of graphene more effectively than chemical reaction of H and N radicals and physical bombardment of Ar ions. From the electrical measurements (drain current vs. gate voltage) of field effect transistors before and after Ar plasma exposure, it was confirmed that the plasma treatment is very effective in controlling bonding properties of graphene to metals accurately without requiring buffer layers.

  • PDF

Novel Graphene Volatile Memory Using Hysteresis Controlled by Gate Bias

  • Lee, Dae-Yeong;Zang, Gang;Ra, Chang-Ho;Shen, Tian-Zi;Lee, Seung-Hwan;Lim, Yeong-Dae;Li, Hua-Min;Yoo, Won-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.120-120
    • /
    • 2011
  • Graphene is a carbon based material and it has great potential of being utilized in various fields such as electronics, optics, and mechanics. In order to develop graphene-based logic systems, graphene field-effect transistor (GFET) has been extensively explored. GFET requires supporting devices, such as volatile memory, to function in an embedded logic system. As far as we understand, graphene has not been studied for volatile memory application, although several graphene non-volatile memories (GNVMs) have been reported. However, we think that these GNVM are unable to serve the logic system properly due to the very slow program/read speed. In this study, a GVM based on the GFET structure and using an engineered graphene channel is proposed. By manipulating the deposition condition, charge traps are introduced to graphene channel, which store charges temporarily, so as to enable volatile data storage for GFET. The proposed GVM shows satisfying performance in fast program/erase (P/E) and read speed. Moreover, this GVM has good compatibility with GFET in device fabrication process. This GVM can be designed to be dynamic random access memory (DRAM) in serving the logic systems application. We demonstrated GVM with the structure of FET. By manipulating the graphene synthesis process, we could engineer the charge trap density of graphene layer. In the range that our measurement system can support, we achieved a high performance of GVM in refresh (>10 ${\mu}s$) and retention time (~100 s). Because of high speed, when compared with other graphene based memory devices, GVM proposed in this study can be a strong contender for future electrical system applications.

  • PDF

Reduction of metal-graphene contact resistance by direct growth of graphene over metal

  • Hong, Seul Ki;Song, Seung Min;Sul, Onejae;Cho, Byung Jin
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.171-174
    • /
    • 2013
  • The high quality contact between graphene and the metal electrode is a crucial factor in achieving the high performance of graphene transistors. However, there is not sufficient research about contact resistance reduction methods to improve the junction of metal-graphene. In this paper, we propose a new method to decrease the contact resistance between graphene and metal using directly grown graphene over a metal surface. The study found that the grown graphene over copper, as an intermediate layer between the copper and the transferred graphene, reduces contact resistance, and that the adhesion strength between graphene and metal becomes stronger. The results confirmed the contact resistance of the metal-graphene of the proposed structure is nearly half that of the conventional contact structure.

Fabrication of One-Dimensional Graphene Metal Edge Contact without Graphene Exfoliation

  • Choe, Jeongun;Han, Jaehyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.371.2-371.2
    • /
    • 2016
  • Graphene electronics is one of the promising technologies for the next generation electronic devices due to the outstanding properties such as conductivity, high carrier mobility, mechanical, and optical properties along with extended applications using 2 dimensional heterostructures. However, large contact resistance between metal and graphene is one of the major obstacles for commercial application of graphene electronics. In order to achieve low contact resistance, numerous researches have been conducted such as gentle plasma treatment, ultraviolet ozone (UVO) treatment, annealing treatment, and one-dimensional graphene edge contact. In this report, we suggest a fabrication method of one-dimensional graphene metal edge contact without using graphene exfoliation. Graphene is grown on Cu foil by low pressure chemical vapor deposition. Then, the graphene is transferred on $SiO_2/Si$ wafer. The patterning of graphene channel and metal electrode is done by photolithography. $O_2$ plasma is applied to etch out the exposed graphene and then Ti/Au is deposited. As a result, the one-dimensional edge contact geometry is built between metal and graphene. The contact resistance of the fabricated one-dimensional metal-graphene edge contact is compared with the contact resistance of vertically stacked conventional metal-graphene contact.

  • PDF

Layer Controlled Synthesis of Graphene using Two-Step Growth Process

  • Han, Jaehyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.221.2-221.2
    • /
    • 2015
  • Graphene is very interesting 2 dimensional material providing unique properties. Especially, graphene has been investigated as a stretchable and transparent conductor due to its high mobility, high optical transmittance, and outstanding mechanical properties. On the contrary, high sheet resistance of extremely thin monolayer graphene limits its application. Artificially stacked multilayer graphene is used to decrease its sheet resistance and has shown improved results. However, stacked multilayer graphene requires repetitive and unnecessary transfer processes. Recently, growth of multilayer graphene has been investigated using a chemical vapor deposition (CVD) method but the layer controlled synthesis of multilayer graphene has shown challenges. In this paper, we demonstrate controlled growth of multilayer graphene using a two-step process with multi heating zone low pressure CVD. The produced graphene samples are characterized by optical microscope (OM) and scanning electron microscopy (SEM). Raman spectroscopy is used to distinguish a number of layers in the multilayer graphene. Its optical and electrical properties are also analyzed by UV-Vis spectrophotometer and probe station, respectively. Atomic resolution images of graphene layers are observed by high resolution transmission electron microscopy (HRTEM).

  • PDF

A Study on Residual Powder Removing Technique of Multi-Layered Graphene Based on Graphene One-Step Transfer Process (그래핀 원스텝 전사(Graphene One-Step Transfer) 공정 기반 다층 그래핀 잔여분말 제거 기술 연구)

  • Woo, Chae-young;Jo, Yeongsu;Hong, Soon-kyu;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.11-15
    • /
    • 2019
  • In this study, a method to remove residual powder on a multi-layered graphene and a new approach to transfer multi-layered graphene at once are studied. A graphene one-step transfer (GOST) method is conducted to minimize the residual powder comparison with a layer-by-layer transfer. Furthermore, a residual powder removing process is investigated to remove residual powder at the top of a multi-layered graphene. After residual powder is removed, the sheet resistance of graphene is decreased from 393 to 340 Ohm/sq in a four-layered graphene. In addition, transmittance slightly increases after residual powder is removed from the top of the multi-layered graphene. Optical and atomic-force microscopy images are used to analyze the graphene surface, and the Ra value is reduced from 5.2 to 3.7 nm following residual powder removal. Therefore, GOST and residual powder removal resolve the limited application of graphene electrodes due to residual powder.

Control of Graphene's Electrical Properties by Chemical Doping Methods

  • Lee, Seung-Hwan;Choi, Min-Sup;La, Chang-Ho;Yoo, Won-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.119-119
    • /
    • 2011
  • This study examined the synthesis of large area graphene and the change of its characteristics depending on the ratio of CH4/H2 by using the thermal CVD methods and performed the experiments to control the electron-hole conduction and Dirac-point of graphene by using chemical doping methods. Firstly, with regard to the characteristics of the large area graphene depending on the ratio of CH4/H2, hydrophobic characteristics of the graphene changed to hydrophilic characteristics as the ratio of CH4/H2 reduces. The angle of contact also increased to 78$^{\circ}$ from 58$^{\circ}$. According to the results of Raman spectroscopy showing the degree of defect, the ratio of I(D)/I(G) increases to 0.42% from 0.25% and the surface resistance also increased to 950 ${\Omega}$ from 750 ${\Omega}$/sq. As for the graphene synthesis at the high temperature of 1,000$^{\circ}$ by using CH4/H2 in a Cu-Foil, the possibility of graphene formation was determined as a function of the ratio of H2 included in the fixed quantity of CH4 as per specifications of every equipment. It was observed that the excessive amount of H2 prevented graphene from forming, as extra H-atoms and molecules activated the reaction to C-bond of graphene. Secondly, in the experiment for the electron-hole conduction and the Dirac-point of graphene using the chemical doping method, the shift of Dirac-point and the change in the electron-hole conduction were observed for both the N-type (PEI) and the P-type (Diazonium) dopings. The ID-VG results show that, for the N-type (PEI) doped graphene, Dirac-point shifted to the left (-voltage direction) by 90V at an hour and by 130 V at 2 hours respectively, compared to the pristine graphene. Carrier mobility was also reduced by 1,600 cm2/Vs (1 hour) and 1,100 cm2/Vs (2 hours), compared to the maximum hole mobility of the pristine graphene.

  • PDF

Graphene growth from polymers

  • Seo, Hong-Kyu;Lee, Tae-Woo
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.145-151
    • /
    • 2013
  • Graphene is a fascinating material with excellent electrical, optical, mechanical, and chemical properties. Remarkable progress has been made in the development of methods for synthesizing large-area, high-quality graphene. Recently, the chemical vapor deposition method has opened up the possibility of using graphene for electronic devices and other applications. This review covers simple and inexpensive methods to grow graphene using polymers as solid carbon sources; which do not require an additional process to transfer graphene from the growth substrate to the receiver substrate.

Nanoporous graphene oxide membrane and its application in molecular sieving

  • Fatemi, S. Mahmood;Arabieh, Masoud;Sepehrian, Hamid
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.183-191
    • /
    • 2015
  • Gas transport through graphene-derived membranes has gained much interest recently due to its promising potential in filtration and separation applications. In this work, we explore Kr-85 gas radionuclide sequestration from natural air in nanoporous graphene oxide membranes in which different sizes and geometries of pores were modeled on the graphene oxide sheet. This was done using atomistic simulations considering mean-squared displacement, diffusion coefficient, number of crossed species of gases through nanoporous graphene oxide, and flow through interlayer galleries. The results showed that the gas features have the densest adsorbed zone in nanoporous graphene oxide, compared with a graphene membrane, and that graphene oxide was more favorable than graphene for Kr separation. The aim of this paper is to show that for the well-defined pore size called P-7, it is possible to separate Kr-85 from a gas mixture containing Kr-85, O2 and N2. The results would benefit the oil industry among others.

Device Applications of Graphene and Their Challenges

  • Lee, B.H.;Hwang, H.J.;Yang, J.H.;Baek, E.J.;Kang, S.C.;Lee, Y.G.;Kang, C.G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.114-114
    • /
    • 2012
  • Even though graphene was introduced with a great hope to replace silicon in future, small (or zero) band gap and poor stability have become major challenges in graphene electronics. Especially, rectification and amplification function which are the elemental functions of silicon device, is very difficult to implement without a bandgap. However, the graphene can still be used in many other device applications if the merits of graphene are creatively utilized. For example, graphene can be applied to almost any kind of substrate. Its conductivity can be varied in some degree using electric field, charge dipole, attached molecules, and many other ways. Recently, graphene stacked with ferroelectric materials or piezoelectric materials has been actively studied for various device applications. In this talk, various device applications of graphene using hybrid stack or novel device structure will be introduced and their prospect will be discussed.

  • PDF