• 제목/요약/키워드: Graphene Platelets (GPLs)

검색결과 41건 처리시간 0.02초

Wave propagation of graphene platelets reinforced metal foams circular plates

  • Lei-Lei Gan;Jia-Qin Xu;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • 제85권5호
    • /
    • pp.645-654
    • /
    • 2023
  • Based on first-order shear deformation theory, a wave propagation model of graphene platelets reinforced metal foams (GPLRMFs) circular plates is built in this paper. The expressions of phase-/group- velocities and wave number are obtained by using Laplace integral transformation and Hankel integral transformation. The effects of GPLs pattern, foams distribution, GPLs weight fraction and foam coefficient on the phase and group velocity of GPLRMFs circular plates are discussed in detail. It can be inferred that GPLs distribution have great impacts on the wave propagation problems, and Porosity-I type distribution has the largest phase velocity and group velocity, followed by Porosity-III, and finally Porosity-II; With the increase of the GPLs weight fraction, the phase- and group- velocities for the GPLRMFs circular plate will be increased; With the increase of the foam coefficient, the phase- and group- velocities for the GPLRMFs circular plate will be decreased.

Nonlinear low-velocity impact response of graphene platelets reinforced metal foams doubly curved shells

  • Hao-Xuan Ding;Yi-Wen Zhang;Yin-Ping Li;Gui-Lin She
    • Steel and Composite Structures
    • /
    • 제49권3호
    • /
    • pp.281-291
    • /
    • 2023
  • Due to the fact that the nonlinear low-velocity impact response of graphene platelets reinforced metal foams (GPLRMF) doubly curved shells have not been investigated in the existing works, this paper aims to solve this issue. Using Reddy's high-order shear deformation theory (HSDT), the nonlinear governing equations of GPLRMF doubly curved shells are obtained by Euler-Lagrange method, discretized by Galerkin principle, and solved by the fourth-order Runge-Kutta method to obtain the impact force and central deflection. The nonlinear Hertz contact law is applied to determine the contact force. Finally, the impacts of graphene platelets (GPLs) distribution pattern, porosity distribution form, porosity coefficient, damping coefficient, impact parameters (radius and initial velocity), GPLs weight fraction, pre-stressing force and different shell types on the low-velocity impact curves are analyzed. It can be found that, among the four shell structures, the impact resistance of spherical shell is the best, while that of cylindrical shell is the worst.

Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites

  • Fenjan, Raad M.;Faleh, Nadhim M.;Ahmed, Ridha A.
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.147-156
    • /
    • 2020
  • This research is related to nonlinear stability analysis of advanced microbeams reinforced by Graphene Platelets (GPLs) considering generic geometrical imperfections and thermal loading effect. Uniform, linear and nonlinear distributions of GPLs in transverse direction have been considered. Imperfection sensitivity of post-bucking behaviors of the microbeam to different kinds of geometric imperfections have been examined. Geometric imperfection is first considered to be identical as the first buckling mode, then a generic function is employed to consider sine-type, local-type and global-type imperfectness. Modified couple stress theory is adopted to incorporate size-dependent behaviors of the beam at micro scale. The post-buckling problem is solved analytically to derive load-amplitude curves. It is shown that post-buckling behavior of microbeam is dependent on the type geometric imperfection and its magnitude. Also, post-buckling load can be enhanced by adding more GPLs or selecting a suitable distribution for GPLs.

Buckling analysis of sandwich beam reinforced by GPLs using various shear deformation theories

  • Hanifehlou, Sona;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • 제25권5호
    • /
    • pp.427-432
    • /
    • 2020
  • In this research, the buckling analysis of sandwich beam with composite reinforced by graphene platelets (GPLs) in two face sheets is investigated. Three type various porosity patterns including uniform, symmetric and asymmetric are considered through the thickness direction of the core. Also, the top and bottom face sheets layers are considered composite reinforced by GPLs/CNTs based on Halpin-Tsai micromechanics model and extended mixture rule, respectively. Based on various shear deformation theories such as Euler-Bernoulli, Timoshenko and Reddy beam theories, the governing equations of equilibrium using minimum total potential energy are obtained. It is seen that the critical buckling load decreases with an increase in the porous coefficient, because the stiffness of sandwich beam reduces. Also, it is shown that the critical buckling load for asymmetric distribution is lower than the other cases. It can see that the effect of graphene platelets on the critical buckling load is higher than carbon nanotubes. Moreover, it is seen that the difference between carbon nanotubes and graphene platelets for Reddy and Euler-Bernoulli beam theories is most and least, respectively.

Buckling analysis of a sandwich plate with polymeric core integrated with piezo-electro-magnetic layers reinforced by graphene platelets

  • Pooya, Nikbakhsh;Mehdi, Mohammadimehr
    • Advances in materials Research
    • /
    • 제11권4호
    • /
    • pp.331-349
    • /
    • 2022
  • In the present work, we proposed an analytical study on buckling behavior of a sandwich plate with polymeric core integrated with piezo-electro-magnetic layers such as BaTiO3 and CoFe2O4 reinforced by graphene platelets (GPLs). The Halpin-Tsai micromechanics model is used to describe the properties of the polymeric core. The governing equations of equilibrium are obtained from first-order shear deformation theory (FSDT) and the Navier's method is employed to solve the equations. The results show the effect of different parameters such as thickness, length, weight fraction of GPLs, and also effect of electric and magnetic field on critical buckling load. The result of this study can be obtained in the aerospace industry and also in the design of sensors and actuators.

Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model

  • Hosseini, Seyed Mahmoud;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.255-271
    • /
    • 2018
  • This paper deals with the transient dynamic analysis and elastic wave propagation in a functionally graded graphene platelets (FGGPLs)-reinforced composite thick hollow cylinder, which is subjected to shock loading. A micromechanical model based on the Halpin-Tsai model and rule of mixture is modified for nonlinear functionally graded distributions of graphene platelets (GPLs) in polymer matrix of composites. The governing equations are derived for an axisymmetric FGGPLs-reinforced composite cylinder with a finite length and then solved using a hybrid meshless method based on the generalized finite difference (GFD) and Newmark finite difference methods. A numerical time discretization is performed for the dynamic problem using the Newmark method. The dynamic behaviors of the displacements and stresses are obtained and discussed in detail using the modified micromechanical model and meshless GFD method. The effects of the reinforcement of the composite cylinder by GPLs on the elastic wave propagations in both displacement and stress fields are obtained for various parameters. It is concluded that the proposed micromechanical model and also the meshless GFD method have a high capability to simulate the composite structures under shock loadings, which are reinforced by FGGPLs. It is shown that the modified micromechanical model and solution technique based on the meshless GFD method are accurate. Also, the time histories of the field variables are shown for various parameters.

Free vibration of FG-GPLRC spherical shell on two parameter elastic foundation

  • Eyvazian, Arameh;Musharavati, Farayi;Talebizadehsardari, Pouyan;Sebaey, Tamer A.
    • Steel and Composite Structures
    • /
    • 재36권6호
    • /
    • pp.711-727
    • /
    • 2020
  • In the present research, the free vibration analysis of functionally graded (FG) nanocomposite deep spherical shells reinforced by graphene platelets (GPLs) on elastic foundation is performed. The elastic foundation is assumed to be Winkler-Past ernak-type. It is also assumed that graphaene platelets are randomly oriented and uniformly dispersed in each layer of the nanocomposite shell. Volume fraction of the graphene platelets as nanofillers may be different in the layers. The modified HalpinTsai model is used to approximate the effective mechanical properties of the multilayer nanocomposite. With the aid of the first order shear deformation shell theory and implementing Hamilton's principle, motion equations are derived. Afterwards, the generalized differential quadrature method (GDQM) is utilized to study the free vibration characteristics of FG-GPLRC spherical shell. To assess the validity and accuracy of the presented method, the results are compared with the available researches. Finally, the natural frequencies and corresponding mode shapes are provided for different boundary conditions, GPLs volume fraction, types of functionally graded, elastic foundation coefficients, opening angles of shell, and thickness-to-radius ratio.

On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations

  • Hao-Xuan, Ding;Yi-Wen, Zhang;Gui-Lin, She
    • Computers and Concrete
    • /
    • 제30권6호
    • /
    • pp.433-443
    • /
    • 2022
  • In the current paper, the nonlinear resonance response of functionally graded graphene platelet reinforced (FG-GPLRC) beams by considering different boundary conditions is investigated using the Euler-Bernoulli beam theory. Four different graphene platelets (GPLs) distributions including UD and FG-O, FG-X, and FG-A are considered and the effective material parameters are calculated by Halpin-Tsai model. The nonlinear vibration equations are derived by Euler-Lagrange principle. Then the perturbation method is used to discretize the motion equations, and the loadings and displacement are all expanded, so as to obtain the first to third order perturbation equations, and then the asymptotic solution of the equations can be obtained. Then the nonlinear amplitude-frequency response is obtained with the help of the modified Lindstedt-Poincare method (Chen and Cheung 1996). Finally, the influences of the distribution types of GPLs, total GPLs layers, GPLs weight fraction, elastic foundations and boundary conditions on the resonance problems are comprehensively studied. Results show that the distribution types of GPLs, total GPLs layers, GPLs weight fraction, elastic foundations and boundary conditions have a significant effect on the nonlinear resonance response of FG-GPLRC beams.

Free vibration of FG-GPLRC conical panel on elastic foundation

  • Eyvazian, Arameh;Musharavati, Farayi;Tarlochan, Faris;Pasharavesh, Abdolreza;Rajak, Dipen Kumar;Husain, Mohammed Bakr;Tran, Tron Nhan
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.1-18
    • /
    • 2020
  • Present research is aimed to investigate the free vibration behavior of functionally graded (FG) nanocomposite conical panel reinforced by graphene platelets (GPLs) on the elastic foundation. Winkler-Pasternak elastic foundation surrounds the mentioned shell. For each ply, graphaene platelets are randomly oriented and uniformly dispersed in an isotropic matrix. It is assumed that the Volume fraction of GPLs reainforcement could be different from layer to layer according to a functionally graded pattern. The effective elastic modulus of the conical panel is estimated according to the modified Halpin-Tsai rule in this manuscript. Cone is modeled based on the first order shear deformation theory (FSDT). Hamilton's principle and generalized differential quadrature (GDQ) approach are also used to derive and discrete the equations of motion. Some evaluations are provided to compare the natural frequencies between current study and some experimental and theoretical investigations. After validation of the accuracy of the present formulation and method, natural frequencies and the corresponding mode shapes of FG-GPLRC conical panel are developed for different parameters such as boundary conditions, GPLs volume fraction, types of functionally graded and elastic foundation coefficients.

Thermal post-buckling of graphene platelet reinforced metal foams doubly curved shells with geometric imperfection

  • Jia-Qin Xu;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • 제87권1호
    • /
    • pp.85-94
    • /
    • 2023
  • In the present work, thermal buckling and post-buckling behaviors of imperfect graphene platelet reinforced metal foams (GPRMFs) doubly curved shells are examined. Material properties of GPRMFs doubly curved shells are presumed to be the function of the thickness. Reddy' shell theory incorporating geometric nonlinearity is utilized to derive the governing equations. Various types of the graphene platelets (GPLs) distribution patterns and doubly curved shell types are taken into account. The nonlinear equations are discretized for the case of simply supported boundary conditions. The thermal post-buckling response are presented to analyze the effects of GPLs distribution patterns, initial geometric imperfection, GPLs weight fraction, porosity coefficient, porosity distribution forms, doubly curved shell types. The results show that these factors have significant effects on the thermal post-buckling problems.