Tabrizi, Haleh;Farhadi, Golnaz;Cioffi, John Matthew;Aldabbagh, Ghadah
ETRI Journal
/
v.38
no.2
/
pp.314-325
/
2016
This paper examines the resource gain that can be obtained from the creation of clusters of nodes in densely populated areas. A single node within each such cluster is designated as a "hotspot"; all other nodes then communicate with a destination node, such as a base station, through such hotspots. We propose a semi-distributed algorithm, referred to as coordinated cognitive tethering (CCT), which clusters all nodes and coordinates hotspots to tether over locally available white spaces. CCT performs the following these steps: (a) groups nodes based on a modified k-means clustering algorithm; (b) assigns white-space spectrum to each cluster based on a distributed graph-coloring approach to maximize spectrum reuse, and (c) allocates physical-layer resources to individual users based on local channel information. Unlike small cells (for example, femtocells and WiFi), this approach does not require any additions to existing infrastructure. In addition to providing parallel service to more users than conventional direct communication in cellular networks, simulation results show that CCT can increase the average battery life of devices by 30%, on average.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.8
/
pp.3203-3215
/
2015
Due to the high growth of SNS population, service scalability is one of the critical issues to be addressed. The cloud environment provides the flexible computing and storage resources for services deployment, which fits the characteristics of scalable SNS deployment. However, if the SNS related information is not properly placed, it will cause unbalance load and heavy transmission cost on the storage virtual machine (VM) and cloud data center (CDC) network. In this paper, we characterize the SNS into a graph model based on the users' associations and interest correlations. The node weight represents the degree of associations, which can be indexed by the number of friends or data sources, and the link weight denotes the correlation between users/data sources. Then, based on the SNS graph, the two-step algorithm is proposed in this paper to determine the placement of SNS related data among VMs. Two k-means based clustering schemes are proposed to allocate social data in proper VM and physical servers for pre-configured VM and dynamic VM environment, respectively. The experimental example was conducted and to illustrate and compare the performance of the proposed schemes.
Kim, Ina;Kim, Minyoung;Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
The Journal of the Korea Contents Association
/
v.18
no.7
/
pp.449-458
/
2018
As the usage of social network services increases, event information occurring offline is spreading more rapidly. Therefore, studies have been conducted to detect events by analyzing social data. In this paper, we propose a graph based event detection scheme considering user interest in social networks. The proposed scheme constructs a keyword graph by analyzing tweets posted by users. We calculates the interest measure from users' social activities and uses it to identify events by considering changes in interest. Therefore, it is possible to eliminate events that are repeatedly posted without meaning and improve the reliability of the results. We conduct various performance evaluations to demonstrate the superiority of the proposed event detection scheme.
Korean Journal of Computational Design and Engineering
/
v.6
no.2
/
pp.78-88
/
2001
In order to adopt feature-based parametric modeling, CAD/CAM applications must have a geometric constraint solver that can handle a large set of geometric configurations efficiently and robustly. In this paper, we describe a graph constructive approach to solving geometric constraint problems. Usually, a graph constructive approach is efficient, however it has its limitation in scope; it cannot handle ruler-and-compass non-constructible configurations and under-constrained problems. To overcome these limitations. we propose an algorithm that isolates ruler-and-compass non-constructible configurations from ruler-and-compass constructible configurations and applies numerical calculation methods to solve them separately. This separation can maximize the efficiency and robustness of a geometric constraint solver. Moreover, the solver can handle under-constrained problems by classifying under-constrained subgraphs to simplified cases by applying classification rules. Then, it decides the calculating sequence of geometric entities in each classified case and calculates geometric entities by adding appropriate assumptions or constraints. By extending the clustering types and defining several rules, the proposed approach can overcome limitations of previous graph constructive approaches which makes it possible to develop an efficient and robust geometric constraint solver.
K-means clustering uses a spherical or elliptical metric to group data points; however, it does not work well for non-convex data such as the concentric circles. Spectral clustering, based on graph theory, is a generalized and robust technique to deal with non-standard type of data such as non-convex data. Results obtained by spectral clustering often outperform traditional clustering such as K-means. In this paper, we review spectral clustering and show important issues in spectral clustering such as determining the number of clusters K, estimation of scale parameter in the adjacency of two points, and the dimension reduction technique in clustering high-dimensional data.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.46
no.6
/
pp.1-8
/
2009
Detecting entry and exit zones in a view covered by multiple cameras is an essential step to determine the topology of the camera setup, which is critical for achieving and sustaining the accuracy and efficiency of multi-camera surveillance system. In this paper, a graph theoretic clustering method is proposed to detect zones using data points which correspond to entry and exit events of objects in the camera view. The minimum spanning tree (MST) is constructed by associating the data points. Then a set of well-formed clusters is sought by removing inconsistent edges of the MST, based on the concepts of the cluster balance and the cluster density defined in the paper. Experimental results suggest that the proposed method is effective, even for sparsely elongated clusters which could be problematic for expectation-maximization (EM). In addition, comparing to the EM-based approaches, the number of data required to obtain stable outcome is relatively small, hence shorter learning period.
Batsuren, Khuyagbaatar;Batbaatar, Erdenebileg;Munkhdalai, Tsendsuren;Li, Meijing;Namsrai, Oyun-Erdene;Ryu, Keun Ho
Journal of Information Processing Systems
/
v.14
no.5
/
pp.1254-1271
/
2018
Keyphrase extraction is one of fundamental natural language processing (NLP) tools to improve many text-mining applications such as document summarization and clustering. In this paper, we propose to use two novel techniques on the top of the state-of-the-art keyphrase extraction methods. First is the anti-patterns that aim to recognize non-keyphrase candidates. The state-of-the-art methods often used the rich feature set to identify keyphrases while those rich feature set cover only some of all keyphrases because keyphrases share very few similar patterns and stylistic features while non-keyphrase candidates often share many similar patterns and stylistic features. Second one is to use the dependency graph instead of the word co-occurrence graph that could not connect two words that are syntactically related and placed far from each other in a sentence while the dependency graph can do so. In experiments, we have compared the performances with different settings of the graphs (co-occurrence and dependency), and with the existing method results. Finally, we discovered that the combination method of dependency graph and anti-patterns outperform the state-of-the-art performances.
A web-based information system, that is a dominant type of information systems, suffers from the "web crisis" in development and maintenance of the system. To cope with the problem, a technology of software clustering to web-based application, which is one of web engineering, is strongly needed. In this paper, we propose a Form Clustering Algorithm along with an application example, which are used for internal-system reengineering to web-based information system. A Form Clustering Algorithm focuses on Page-model which is the feature of the web among the various web-based information system's structural model. Specially, we applying distance matrix to navigation model of graph form for easily analyzing, and web log analysis for identifying core function object that have a highly loading. Also, we create web software structure that can be used to maximize reusability and assign hardware effectively through 2-phase clustering step. Form Clustering Algorithm might be used at web-based information system development and maintenance for reusable web component development and hardware assignment, respectively.
Low-Rank Representation (LRR) based methods are widely used in many practical applications, such as face clustering and object detection, because they can guarantee high prediction accuracy when used to constructing graphs in graph - based semi-supervised learning. However, in order to solve the LRR problem, it is necessary to perform singular value decomposition on the square matrix of the number of data points for each iteration of the algorithm; hence the calculation is inefficient. To solve this problem, we propose an improved and faster LRR method based on the recently published Fast LRR (FaLRR) and suggests ways to introduce and optimize additional constraints on the underlying optimization goals in order to address the fact that the FaLRR is fast but actually poor in classification problems. Our experiments confirm that the proposed method finds a better solution than LRR does. We also propose Fast MLRR (FaMLRR), which shows better results when the goal of minimizing is added.
The Transactions of the Korea Information Processing Society
/
v.5
no.8
/
pp.2041-2049
/
1998
This paper suggests a technique for program segmentation and maintenance using PSDG(Post-State Dependency Graph) that improves the quality of a software by identifying and detecting defects in already fixed source code. A program segmentation is performed by utilizing source code analysis which combines the measures of static, dynamic and semantic slicing when we need understandability of defect in programs for corrective maintanence. It provides users with a segmental principle to split a program by tracing state dependency of a source code with the graph, and clustering and highlighting, Through a modeling of the PSDG, elimination of ineffective program deadcode and generalization of related program segments arc possible, Additionally, it can be correlated with other design modeb as STD(State Transition Diagram), also be used as design documents.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.