• Title/Summary/Keyword: Graph-Based Model

Search Result 495, Processing Time 0.026 seconds

Directed Graph를 이용한 경제 모형의 접근 - Crandall의 탑승자 사망 모형에 관한 수정- ( Directed Graphical Approach for Economic Modeling : A Revision of Crandall's Occupant Death Model )

  • Roh, J.W.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.55-64
    • /
    • 1998
  • Directed graphic algorithm was applied to an empirical analysis of traffic occupant fatalities based on a model by Crandall. In this paper, Crandall's data on U.S. traffic fatalities for the period 1947-1981 are focused and extended to include 1982-1993. Based on the 1947-1981 annual data, the directed graph algorithms reveal that occupant traffic deaths are directly caused by income, vehicle miles, and safety devices. Vehicle mileage is caused by income and rural driving. The estimation is conducted using three stage least squares regression. Those results show a difference between the traditional regression methodology and causal graphical analysis. It is also found that forecasts from the directed graph based model outperform forecasts from the regression-based models, in terms of mean squared forecasts error. Furthermore, it is demonstrates that there exists some latent variables between all explanatory variables and occupant deaths.

  • PDF

A Lattice-Based Role Graph Security Model ensuring Confidentiality and Integrity (비밀성과 무결성을 보장하는 격자개념의 역할그래프 보안 모델)

  • Choi, Eun-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.91-98
    • /
    • 2009
  • In this paper, this model ensures confidentiality and integrity of mandatory access cotrol policy which based on fuzzy function with importance of information. And it solves authorization abuse problem through role graph creation algorithm and flowing policy that security grade is applied. Because this model composes role hierarchy which bind similar role concept to apply to commercial environment, it has expansile advantage by large scale security system as well as is easy that add new role.

Bilinear Graph Neural Network-Based Reasoning for Multi-Hop Question Answering (다중 홉 질문 응답을 위한 쌍 선형 그래프 신경망 기반 추론)

  • Lee, Sangui;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.8
    • /
    • pp.243-250
    • /
    • 2020
  • Knowledge graph-based question answering not only requires deep understanding of the given natural language questions, but it also needs effective reasoning to find the correct answers on a large knowledge graph. In this paper, we propose a deep neural network model for effective reasoning on a knowledge graph, which can find correct answers to complex questions requiring multi-hop inference. The proposed model makes use of highly expressive bilinear graph neural network (BGNN), which can utilize context information between a pair of neighboring nodes, as well as allows bidirectional feature propagation between each entity node and one of its neighboring nodes on a knowledge graph. Performing experiments with an open-domain knowledge base (Freebase) and two natural-language question answering benchmark datasets(WebQuestionsSP and MetaQA), we demonstrate the effectiveness and performance of the proposed model.

Identification of N:M corresponding polygon pairs using a graph spectral method (Graph spectral 기법을 이용한 N:M 대응 폴리곤쌍 탐색)

  • Huh, Yong;Yu, Ki-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.11-13
    • /
    • 2010
  • Combined with the indeterminate boundaries of spatial objects, n:m correspondences makes an object-based matching be a complex problem. In this study, we model the boundary of a polygon object with fuzzy model and describe their overlapping relations as a weighted bipartite graph. Then corresponding pairs including 1:0, 1:1, 1:n and n:m relations are identified using a spectral singular value decomposition.

  • PDF

Performance analysis of packet transmission for a Signal Flow Graph based time-varying channel over a Wireless Network (무선 네트워크 time-varying 채널 상에서 Signal Flow Graph를 이용한 패킷 전송 성능 분석)

  • Kim, Sang-Yang;Park, Hong-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.65-67
    • /
    • 2004
  • Change of state of Channel between two wireless terminals which is caused by noise and multiple environmental conditions for happens frequently from the Wireles Network. So, When it is like that planning a wireless network protocol or performance analysis, it follows to change of state of time-varying channel and packet the analysis against a transmission efficiency is necessary. In this paper, analyzes transmission time of a packet and a packet in a time-varying and packet based Wireless Network. To reflecte the feature of the time-varying channel, we use a Signal Flow Graph model. From the model the mean of transmission time and the mean of queue length of the packet are analyzed in terms of the packet distribution function, the packet transmission service time, and the PER of the time-varying channel.

  • PDF

A Model-Based Method for Information Alignment: A Case Study on Educational Standards

  • Choi, Namyoun;Song, Il-Yeol;Zhu, Yongjun
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.3
    • /
    • pp.85-94
    • /
    • 2016
  • We propose a model-based method for information alignment using educational standards as a case study. Discrepancies and inconsistencies in educational standards across different states/cities hinder the retrieval and sharing of educational resources. Unlike existing educational standards alignment systems that only give binary judgments (either "aligned" or "not-aligned"), our proposed system classifies each pair of educational standard statements in one of seven levels of alignments: Strongly Fully-aligned, Weakly Fully-aligned, Partially-$aligned^{***}$, Partially-$aligned^{**}$, Partially-$aligned^*$, Poorly-aligned, and Not-aligned. Such a 7-level categorization extends the notion of binary alignment and provides a finer-grained system for comparing educational standards that can broaden categories of resource discovery and retrieval. This study continues our previous use of mathematics education as a domain, because of its generally unambiguous concepts. We adopt a materialization pattern (MP) model developed in our earlier work to represent each standard statement as a verb-phrase graph and a noun-phrase graph; we align a pair of statements using graph matching based on Bloom's Taxonomy, WordNet, and taxonomy of mathematics concepts. Our experiments on data sets of mathematics educational standards show that our proposed system can provide alignment results with a high degree of agreement with domain expert's judgments.

UML diagram-driven test scenarios generation based on the temporal graph grammar

  • Shi, Zhan;Zeng, Xiaoqin;Zhang, Tingting;Han, Lei;Qian, Ying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2476-2495
    • /
    • 2021
  • Model-based software architecture verification and test scenarios generation are becoming more and more important in the software industry. Based on the existing temporal graph grammar, this paper proposes a new formalization method of the context-sensitive graph grammar for aiming at UML activity diagrams, which is called the UML Activity Graph Grammar, or UAGG. In the UAGG, there are new definitions and parsing algorithms. The proposed mechanisms are able to not only check the structural correctness of the UML activity diagram but also automatically generate the test scenario according to user constraints. Finally, a case study is discussed to illustrate how the UAGG and its algorithms work.

A Gradient-Based Explanation Method for Node Classification Using Graph Convolutional Networks

  • Chaehyeon Kim;Hyewon Ryu;Ki Yong Lee
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.803-816
    • /
    • 2023
  • Explainable artificial intelligence is a method that explains how a complex model (e.g., a deep neural network) yields its output from a given input. Recently, graph-type data have been widely used in various fields, and diverse graph neural networks (GNNs) have been developed for graph-type data. However, methods to explain the behavior of GNNs have not been studied much, and only a limited understanding of GNNs is currently available. Therefore, in this paper, we propose an explanation method for node classification using graph convolutional networks (GCNs), which is a representative type of GNN. The proposed method finds out which features of each node have the greatest influence on the classification of that node using GCN. The proposed method identifies influential features by backtracking the layers of the GCN from the output layer to the input layer using the gradients. The experimental results on both synthetic and real datasets demonstrate that the proposed explanation method accurately identifies the features of each node that have the greatest influence on its classification.

Toxicity prediction of chemicals using OECD test guideline data with graph-based deep learning models (OECD TG데이터를 이용한 그래프 기반 딥러닝 모델 분자 특성 예측)

  • Daehwan Hwang;Changwon Lim
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.3
    • /
    • pp.355-380
    • /
    • 2024
  • In this paper, we compare the performance of graph-based deep learning models using OECD test guideline (TG) data. OECD TG are a unique tool for assessing the potential effects of chemicals on health and environment. but many guidelines include animal testing. Animal testing is time-consuming and expensive, and has ethical issues, so methods to find or minimize alternatives are being studied. Deep learning is used in various fields using chemicals including toxicity prediciton, and research on graph-based models is particularly active. Our goal is to compare the performance of graph-based deep learning models on OECD TG data to find the best performance model on there. We collected the results of OECD TG from the website eChemportal.org operated by the OECD, and chemicals that were impossible or inappropriate to learn were removed through pre-processing. The toxicity prediction performance of five graph-based models was compared using the collected OECD TG data and MoleculeNet data, a benchmark dataset for predicting chemical properties.

Multi-site based earthquake event classification using graph convolution networks (그래프 합성곱 신경망을 이용한 다중 관측소 기반 지진 이벤트 분류)

  • Kim, Gwantae;Ku, Bonhwa;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.615-621
    • /
    • 2020
  • In this paper, we propose a multi-site based earthquake event classification method using graph convolution networks. In the traditional earthquake event classification methods using deep learning, they used single-site observation to estimate seismic event class. However, to achieve robust and accurate earthquake event classification on the seismic observation network, the method using the information from the multi-site observations is needed, instead of using only single-site data. Firstly, our proposed model employs convolution neural networks to extract informative embedding features from the single-site observation. Secondly, graph convolution networks are used to integrate the features from several stations. To evaluate our model, we explore the model structure and the number of stations for ablation study. Finally, our multi-site based model outperforms up to 10 % accuracy and event recall rate compared to single-site based model.