• Title/Summary/Keyword: Graph entropy

Search Result 15, Processing Time 0.024 seconds

A Reexamination on the Influence of Fine-particle between Districts in Seoul from the Perspective of Information Theory (정보이론 관점에서 본 서울시 지역구간의 미세먼지 영향력 재조명)

  • Lee, Jaekoo;Lee, Taehoon;Yoon, Sungroh
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.2
    • /
    • pp.109-114
    • /
    • 2015
  • This paper presents a computational model on the transfer of airborne fine particles to analyze the similarities and influences among the 25 districts in Seoul by quantifying a time series data collected from each district. The properties of each district are driven with the model of a time series of the fine particle concentrations, and the calculation of edge-based weights are carried out with the transfer entropies between all pairs of the districts. We applied a modularity-based graph clustering technique to detect the communities among the 25 districts. The result indicates the discovered clusters correspond to a high transfer-entropy group among the communities with geographical adjacency or high in-between traffic volumes. We believe that this approach can be further extended to the discovery of significant flows of other indicators causing environmental pollution.

Segmentation and Contents Classification of Document Images Using Local Entropy and Texture-based PCA Algorithm (지역적 엔트로피와 텍스처의 주성분 분석을 이용한 문서영상의 분할 및 구성요소 분류)

  • Kim, Bo-Ram;Oh, Jun-Taek;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.377-384
    • /
    • 2009
  • A new algorithm in order to classify various contents in the image documents, such as text, figure, graph, table, etc. is proposed in this paper by classifying contents using texture-based PCA, and by segmenting document images using local entropy-based histogram. Local entropy and histogram made the binarization of image document not only robust to various transformation and noise, but also easy and less time-consuming. And texture-based PCA algorithm for each segmented region was taken notice of each content in the image documents having different texture information. Through this, it was not necessary to establish any pre-defined structural information, and advantages were found from the fact of fast and efficient classification. The result demonstrated that the proposed method had shown better performances of segmentation and classification for various images, and is also found superior to previous methods by its efficiency.

AUTOMATIC IMAGE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING DATA BY COMBINING REGION AND EDGE INFORMATION

  • Byun, Young-Gi;Kim, Yong-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.72-75
    • /
    • 2008
  • Image segmentation techniques becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Seeded Region Growing (SRG) and Edge Information. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying SRG. Finally the region merging process, using region adjacency graph (RAG), was carried out to get the final segmentation result. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.

  • PDF

ModifiedFAST: A New Optimal Feature Subset Selection Algorithm

  • Nagpal, Arpita;Gaur, Deepti
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.113-122
    • /
    • 2015
  • Feature subset selection is as a pre-processing step in learning algorithms. In this paper, we propose an efficient algorithm, ModifiedFAST, for feature subset selection. This algorithm is suitable for text datasets, and uses the concept of information gain to remove irrelevant and redundant features. A new optimal value of the threshold for symmetric uncertainty, used to identify relevant features, is found. The thresholds used by previous feature selection algorithms such as FAST, Relief, and CFS were not optimal. It has been proven that the threshold value greatly affects the percentage of selected features and the classification accuracy. A new performance unified metric that combines accuracy and the number of features selected has been proposed and applied in the proposed algorithm. It was experimentally shown that the percentage of selected features obtained by the proposed algorithm was lower than that obtained using existing algorithms in most of the datasets. The effectiveness of our algorithm on the optimal threshold was statistically validated with other algorithms.

Scenic Image Research Based on Big Data Analysis - Take China's Four Ancient Cities as an Example

  • Liang, Rui;Guo, Hanwen;Liu, Jiayu;Liu, Ziyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2769-2784
    • /
    • 2020
  • This paper aims to compare the scenic images of four ancient Chinese cities including Lijiang, Pingyao, Huizhou and Langzhong, so as to provide specific development strategies for the ancient cities. In this paper, the ancient cities' scenic images are divided into three sub-indexes and eight evaluation dimensions. Based on this, the study first uses Python software to collect tourists' online comments on the four ancient cities. Then, the social network analysis method is used to build a high-frequency keywords matrix of tourist comments and the R language is used to generate a visual network graph. After this, the entropy weight method is used to determine the weights and values of eight evaluation dimensions. Finally, the tourists' overall satisfaction indexes of the four ancient cities are calculated accordingly. The results show that (1) the overall satisfaction of Lijiang is the highest, while that of Huizhou is the lowest; (2) from the weight of each evaluation dimension, it can be seen that tourists care more about the national culture and historical culture; (3) from tourists' satisfaction index on each evaluation dimension of the four ancient cities, we can find that the four ancient cities has their own advantages and disadvantages in tourism development. (4) local tourism-related institutions should strengthen their advantages and improve their deficiencies so as to enhance tourists' overall image of the ancient city.