• Title/Summary/Keyword: Granitic rocks

Search Result 298, Processing Time 0.031 seconds

Geochemical Characteristics of the Gyeongju LILW Repository II. Rock and Mineral (중.저준위 방사성폐기물 처분부지의 지구화학 특성 II. 암석 및 광물)

  • Kim, Geon-Young;Koh, Yong-Kwon;Choi, Byoung-Young;Shin, Seon-Ho;Kim, Doo-Haeng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.307-327
    • /
    • 2008
  • Geochemical study on the rocks and minerals of the Gyeongju low and intermediate level waste repository was carried out in order to provide geochemical data for the safety assessment and geochemical modeling. Polarized microscopy, X-ray diffraction method, chemical analysis for the major and trace elements, scanning electron microscopy(SEM), and stable isotope analysis were applied. Fracture zones are locally developed with various degrees of alteration in the study area. The study area is mainly composed of granodiorite and diorite and their relation is gradational in the field. However, they could be easily distinguished by their chemical property. The granodiorite showed higher $SiO_2$ content and lower MgO and $Fe_2O_3$ contents than the diorite. Variation trends of the major elements of the granodiorite and diorite were plotted on the same line according to the increase of $SiO_2$ content suggesting that they were differentiated from the same magma. Spatial distribution of the various elements showed that the diorite region had lower $SiO_2,\;Al_2O_3,\;Na_2O\;and\;K_2O$ contents, and higher CaO, $Fe_2O_3$ contents than the granodiorite region. Especially, because the differences in the CaO and $Na_2O$ distribution were most distinct and their trends were reciprocal, the chemical variation of the plagioclase of the granitic rocks was the main parameter of the chemical variation of the host rocks in the study area. Identified fracture-filling minerals from the drill core were montmorillonite, zeolite minerals, chlorite, illite, calcite and pyrite. Especially pyrite and laumontite, which are known as indicating minerals of hydrothermal alteration, were widely distributed in the study area indicating that the study area was affected by mineralization and/or hydrothermal alteration. Sulfur isotope analysis for the pyrite and oxygen-hydrogen stable isotope analysis for the clay minerals indicated that they were originated from the magma. Therefore, it is considered that the fracture-filling minerals from the study area were affected by the hydrothermal solution as well as the simply water-rock interaction.

  • PDF

W-Sn-Bi-Mo Mineralization of Shizhuyuan deposit, Hunan Province, China (중국 호남성 시죽원 광상의 W-Sn-Bi-Mo광화작용)

  • 윤경무;김상중;이현구;이찬희
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.179-189
    • /
    • 2002
  • The Geology of the Shizhuyuan W-Sn-Bi-Mo deposits, situated 16 Ian southeast of Chengzhou City, Hunan Province, China, consist of Proterozoic metasedimentary rocks, Devonian carbonate rocks, Jurassic granitic rocks, Cretaceous granite porphyry and ultramafic dykes. The Shizhuyuan polymetallic deposits were associated with medium- to coarse-grained biotite granite of stage I. According to occurrences of ore body, ore minerals and assemblages, they might be classified into three stages such as skarn, greisen and hydrothernlal stages. The skarn is mainly calcic skarn, which develops around the Qianlishan granite, and consists of garnet, pyroxene, vesuvianite, wollastonite, amphibolite, fluorite, epidote, calcite, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unidetified Bi- Te-S system mineral, magnetite, and hematite. The greisen was related to residual fluid of medium- to coarse-grained biotite granite, and is classified into planar and vein types. It is composed of quartz, feldspar, muscovite, chlorite, tourmaline, topaz, apatite, beryl, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unknown uranium mineral, unknown REE mineral, pyrite, magnetite, and chalcopyrite with minor hematite. The hydrothermal stage was related to Cretaceous porphyry, and consist of quartz, pyrite and chalcopyrite. Scheelite shows a zonal texture, and higher MoO) content as 9.17% in central part. Wolframite is WO); 71.20 to 77.37 wt.%, FeO; 9.37 to 18.40 wt.%, MnO; 8.17 to 15.31 wt.% and CaO; 0.01 to 4.82 wt.%. FeO contents of cassiterite are 0.49 to 4.75 wt.%, and show higher contents (4.]7 to 4.75 wt.%) in skarn stage (Stage I). Te and Se contents of native bismuth range from 0.00 to 1.06 wt.% and from 0.00 to 0.57 wt.%, respectively. Unidentified Bi-Te-S system mineral is Bi; 78.62 to 80.75 wt.%, Te; 12.26 to 14.76 wt.%, Cu; 0.00 to 0.42 wt.%, S; 5.68 to 6.84 wt.%, Se; 0.44 to 0.78 wt.%.

K-Ar and $^{40}$ Ar/$^{39}$ Ar Ages from Metasediments in the Okcheon Metamorphic Belt and their Tectonic Implication (옥천 변성대 변성퇴적암의 K-Ar및 $^{40}$ Ar/$^{39}$ Ar 연대와 그 의의)

  • 김성원;오창환;이덕수;이정후
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.79-99
    • /
    • 2003
  • Muscovite and biotite from 52 metasediments and 5 granites in the Hwasan area, the southwest of the Okcheon metamorphic belt and the Miwon-Jeungpyeong area, central Okcheon metamorphic belt were dated by the K-Ar and $^{40}$ Ar/$^{39}$ Ar methods. Muscovite and biotite ages from metapelitic and psammitic rocks (metasediments) of the Boeun and Pibanryeong units in the Hwasan area are concentrated in the mid-Jurassic (149-180 Ma). K-Ar and $^{40}$ Ar/$^{39}$ Ar ages for metapelitic and psammitic rocks of the Boeun and Pibanryeong units in the Miwon-Jeungpyeong area show complicated age distribution. Muscovite and biotite ages are classified by three groups, 142-194 Ma, 216-234 Ma, and 241-277 Ma. Younger (Cretaceous) ages occur only in metasediments close to Cretaceous granitic rocks in the southeastern region and the older ages of 216-277 Ma are restricted to the middle Part of the Jeungpyeong area. Most ages in the other area of the central Okcheon metamorphic belt fall between 142-194 Ma (Jurassic). K-Ar and $^{40}$ Ar/$^{39}$ Ar ages for granite from the northern part in the both the southwest and central Okcheon metamorphic belt also gave middle Jurassic ages (156-168 Ma). The similar ages from both metasediments and granites in the study areas indicate simultaneous cooling of both rocks to 300-350$^{\circ}C$ during the middle Jurassic. The state of graphitization of carbonaceous material of all metasediments in the study areas Indicates fully ordered graphite falling within a small range, from 3.353 to 3.359 ${\AA}$, which indicate amphibolite facies regional metamorphism. In the southern sector of the Boeun unit from the Hwasan area, metamorphic grade indicated by mineral paragenesis during regional intermediate-P/T metamorphism is greenschist facies. Whereas, the $d_{002}$ values for carbonaceous materials in the same sector show fully ordered graphite (ca. 500$^{\circ}C$) indicating amphibolite facies. This result with the concentration of mica ages of metasediments into the middle Jurassic, the presence of low-P/T thermal metamorphic zone (>500$^{\circ}C$) in the metasediments close to the Jurassic granite and the regional intrusion of Jurassic granites and their middle Jurassic intrusion and cooling ages may indicate the low-P/T regional thermal event during the early(\ulcorner)-middle Jurassic after main intermediate-P/T metamorphism which formed main mineral assemblage regionally in the study area. The regional thermal event failed, however, to reset the mineral assemblage of regional intermediate-P/T metamorphism except for narrow aureole (1-2 km) around Jurassic granite because e duration of thermal effect was relatively short by repid cooling of the Jurassic granite. In the middle part of the Jeungpyeong area, central Ogcheon metamorphic belt, muscovite and biotite K-Ar ages from 5 samples are 263-277 Ma and 241-249 Ma, respectively. An intermediate-P/T metamorphism is currently accepted to have occurred between 280 and 300 Ma. Therefore, the muscovite and biotite ages can be interpreted as cooling ages after Ml metamorphism indicating rapid cooling to ca 350$^{\circ}C$ between 280-300 Ma and 263-271 Ma, and biotite ages indicate slower cooling to ca. 300$^{\circ}C$ between 263-277 Ma and 241-249 Ma. However, more detail study is needed to confirm why the Permian to Triassic ages occur only in the middle Part of the Jeungpyeong area.a.

Areal Distribution Ratios of the Constituent Rocks with the Geologic Ages and Rock Types in the Chungbug-Chungnam-Daejeon Areas (충북-충남-대전지역 구성암류의 지질시대별 및 암종별 분포율)

  • Yun, Hyun-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Hong, Sei-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.191-205
    • /
    • 2008
  • In order to use the geologic information data such as industrialization of rock resources, site enlargement and development planning, distributive ratios of rock types and geologic ages were obtained by the ArcGIS 9.2 program, and digital geologic and geographic maps of 1:250,000 scale, in the Chungbug, Chungnam and Daejeon areas, respectively. In the Chungbug area, 64 rock kinds are developed and their geologic ages can be classified into 8 large groups. In the geologic ages, the ratios are decreasing in the order of Jurassic, Precambrian, Age-unknown, Cretaceous, Quaternary, Cambro-Ordovician and Carboniferous-Triassic ages, all of which comprise most ratios of 98.48% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Precambrian banded gneiss of Gyeonggi metamorphic complex, Cretaceous biotite granite, Quaternary alluvium, Great limestone group, Lower phyllite zone and Meta-sandy rock zone of age-unknown Ogcheon group, Triassic Cheongsan granite, Precambrian granitic gneiss of Gyeonggi gneiss complex, Pebble bearing phyllite zone of age-unknown Ogcheon group and biotite gneiss of Sobaegsan metamorphic complex, all of which comprise the prevailing ratio of 84.27% in the area. In the Chungnam area, 35 rock types are developed and their geologic ages can be classified into 6 large groups. In the geologic ages, the ratios are decreasing in the order of Precambrian, Jurassic and Quaternary ages, which occupy the prevailing ratio of 87.55% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Precambrian banded gneiss of Gyeonggi metamorphic complex, Quaternary alluvium, Precambrian granite and granitic gneiss of Gyeonggi gneiss complex, Cretaceous acidic dykes, Lower phyllite zone and Pebble bearing phyllite zone of age-unknown Ogcheon group and Quaternary reclaimed land, which occupy the ratios of 74.28% in the area. In the Daejeon area, 11 rock types are developed and their geologic ages can be classified into 5 large groups. In the ages, the ratios are decreasing in the order of Jurassic, Age-unknown and Quaternary, which occupy most ratios of 93.40% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Quaternary alluvium and Lower phyllite zone and Pebble bearing phyllite zone of age-unknown Ogcheon group, which occupy the prevailing ratios of 91.09% in the area.

Chromium Distribution in Korean Soils: A Review (우리나라 토양의 크롬 분포특성에 관한 고찰)

  • Kim, Rog-Young;Sung, Jwa-Kyung;Lee, Ju-Young;Kim, Seok-Cheol;Jang, Byoung-Choon;Kim, Won-Il;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.296-303
    • /
    • 2010
  • Chromium as a constituent of rocks occurs naturally in the environment in varying concentrations. However, the human activity has changed the geochemical cycle of chromium in the environment and has caused the chromium accumulation in soils. Korean soils revealed a wide range of chromium contents depending on parent material and land use. The total chromium contents of volcanic ash soils in Jeju, which were determined using $HNO_3$ + $HClO_4$ + HF, ranged from 434 to 1,164 mg $kg^{-1}$. The 'ecological' total chromium contents extracted using conc. HCl + conc. $HNO_3$ (aqua regia) in the same soils varied in a lower range of 50-189 mg $kg^{-1}$ (averaged percentage of aqua regia contents in $HNO_3$ + $HClO_4$ + HF contents: 14.9%). Serpentine soils in Andong showed a 'ecological' total chromium content of 309 mg $kg^{-1}$ and against it granitic soils in Andong only 20 mg $kg^{-1}$. In uncontaminated forest soils of Korea, the 'ecological' total chromium contents varied from 4.89 to 106 mg $kg^{-1}$ and the soluble chromium contents determined using 0.1 M HCl ranged from 0.01 to 0.64 mg $kg^{-1}$ (averaged percentage of 0.1 M HCl contents in aqua regia contents: 0.4%). Arable lands contained more soluble chromium than reported in forest soils (averaged soluble chromium: 0.36 and 0.09 mg $kg^{-1}$, respectively). In particular, the soluble chromium contents in greenhouse, orchard and upland soils were higher than in contaminated soils near mine and industrial site (maximum contents: greenhouse 15.3 mg $kg^{-1}$; upland 12.1 mg $kg^{-1}$; orchard 8.29 mg $kg^{-1}$; mine site 4.76 mg $kg^{-1}$; industrial site 2.80 mg $kg^{-1}$). On the basis of these results a accumulation of chromium in some specific arable lands can be assumed, probably by long-continued applications of fertilizers or soil amendments containing chromium. In Korean Enforcement Decree of the Soil Environment Conservation Act soil standards for total chromium do not exist yet.

Geochemistry of Ogbang Tungsten Deposits, Southern Korea (옥방중석광상(玉房重石鑛床)의 지구화학(地球化學))

  • Kim, Sabng Yup
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.53-71
    • /
    • 1986
  • Detailed studies of regional geology and geochemistry of the tungsten mineralisation of Ogbang mine were carried out; in particular geochemical trends of major and trace elements of different lithological units, in comparison with those of the Sangdong area, together with igneous plutons in the area. The Ogbang deposit is in a pegmatitic association localised only in amphibolites whilst pegmatites in adjacent schists and gneisses are barren. The tungsten is geochemically accompanied by increase of $K_2O$, $Na_2O$ and Rb, and depletion of Sr. The trend of Rb/Sr ratio to the type of mineralisation, in commonly seen in the mineralised granites of the world, suggests that the tungsten in the Ogbang pegmatites was supplied by hydrothermal processes which at the same time caused Rb enrichment and Sr depletion. These trend could be of use in the search for new ore bodies in common with those of mineralised granitic or pegmatitic host rocks. There is no evidence that the granites in the area have any genetic influence spacially and temporarily on the initial scheelite formation.

  • PDF

A Measurement of Hydraulic Conductivity of Disturbed Sandy Soils by Particle Analysis and Falling Head Method (입도분석 및 변수두법을 이용한 교란 사질 토양의 투수계수 측정)

  • Jeong Ji-Gon;Seo Byong-Min;Ha Seong-Ho;Lee Dong-Won
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.15-21
    • /
    • 2006
  • Sandy soils obtained from the field were examined by the way of particle analyses. The hydraulic conductivity values of the disturbed soil samples were measured by the falling head method. Then the correlations between the hydraulic conductivity and particle distribution were defined. The soil which was a product of the weathering of the granitic rocks belonged to sand and loamy sand area in a sand-silt-clay triangular diagram. The measurements of hydraulic conductivity were $1.15X10^{-5}\sim7.31X10^{-4}cm/sec$ which is the range of sand and silt. It was clearly observed that the hydraulic conductivity measurements of the sandy soils showed stronger correlations with the particle variances rather than the mean grain sizes. The larger the variances, the smaller the hydraulic conductivity measurements. The sandy soil which was a product of weathered granite and whose mean grain size was $0.38\sim1.97mm$ showed regression curves of $y=6.0E-5x^{-1.4}$ in a correlations between hydraulic conductivity and particle variances. Accordingly, it is clearly concluded that making estimates with-out any consideration about particle variances can produce serious errors.

A Study on the Metamorphism of Gneisses in the Northern Gohung Area, Chonnam (전라남도 고흥 북부지역에 분포하는 편마암류의 변성작용에 관한 연구)

  • Shin, Sang-Eun;Cho, Kye-Bok;Park, Bae-Young
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.443-473
    • /
    • 2004
  • In northern Gohung granitic gneiss, porphyroblastic gneiss and migmatitic gneiss are widely distributed. Gneisses were plotted in granodiorite domain on an lUGS silica-alkali diagram. The amounts of trace elements (Li, Zn, Sc, Sr, Ni, V Y etc.) vs. $SiO_2$, somewhat decreased. Plagioclase showed a wide compositional range ($An_{32-48}$). $X_{alm}$ and $X_{sps}$ were higher in garnet rim and $X_{pyp}$ in garnet core. The rocks in the study area were formed from S and I-type magmas which generated from syn-collision and the late to post-orogenic tectonic environment. Metamorphic P-T conditions u·ere low to medium pressure, high temperature (803-913$^{\circ}C$, 6.1-7.3 kb) and overprinted by retrograde metamorphism (570-726$^{\circ}C$, 2.2-5.1 kb) and chloritization.

Mineralogical and Geochemical Characteristics of the Wolgok-Seongok Orebodies in the Gagok Skarn Deposit : Their Genetic Implications (가곡 스카른 광상 월곡-선곡 광체의 광물.지구화학적 특성: 성인적 의미)

  • Choi, Bu-Kap;Choi, Seou-Gyu;Seo, Ji-Eun;Yoo, In-Kol;Kang, Heung-Suk;Koo, Min-Ho
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.477-490
    • /
    • 2010
  • The Gagok stratabound skarn deposit is the result of the intrusion of the Cretaceous granitic pluton into the Paleozoic calcareous rocks. The subvolcanic intrusion ranges in composition from quartz monzonite to granite porphyry with I-type, calc-alkaline and weakly peraluminous characteristics. Both endoskarn and exoskarn are developed at the Gagok Zn-(Pb) deposit, with more exoskarn than endoskarn. Geochemical and mineralogical characteristics in the Seongok and Wolgok orebodies can be treated in terms of self-organization. Sphalerites in the Gagok ore can also incorporate minor amounts of Mn, Cd, Cu and In. Trace element concentrations in different orebodies vary because fractionation of a given element into sphalerite is influenced by formation temperature and the amount of sphalerite in the ore. A group of high In/Zn and Cd/Zn ratios in ores, and low Mn/Fe ratios in sphalerites are correlated with proximal processes of a magmatic source. The pattern of minor/trace element variations in ores and sphalcrites can be used for petrogenetic interprctation, e.g., orebody zonation related to crystallization temperature and fluid d sources.

INVESTIGATION OF BAIKDU-SAN VOLCANO WITH SPACE-BORNE SAR SYSTEM

  • Kim, Duk-Jin;Feng, Lanying;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.148-153
    • /
    • 1999
  • Baikdu-san was a very active volcano during the Cenozoic era and is believed to be formed in late Cenozoic era. Recently it was also reported that there was a major eruption in or around 1002 A.D. and there are evidences which indicate that it is still an active volcano and a potential volcanic hazard. Remote sensing techniques have been widely used to monitor various natural hazards, including volcanic hazards. However, during an active volcanic eruption, volcanic ash can basically cover the sky and often blocks the solar radiation preventing any use of optical sensors. Synthetic aperture radar(SAR) is an ideal tool to monitor the volcanic activities and lava flows, because the wavelength of the microwave signal is considerably longer that the average volcanic ash particle size. In this study we have utilized several sets of SAR data to evaluate the utility of the space-borne SAR system. The data sets include JERS-1(L-band) SAR, and RADARSAT(C-band) data which included both standard mode and the ScanSAR mode data sets. We also utilized several sets of auxiliary data such as local geological maps and JERS-1 OPS data. The routine preprocessing and image processing steps were applied to these data sets before any attempts of classifying and mapping surface geological features. Although we computed sigma nought ($\sigma$$^{0}$) values far the standard mode RADARSAT data, the utility of sigma nought image was minimal in this study. Application of various types of classification algorithms to identify and map several stages of volcanic flows was not very successful. Although this research is still in progress, the following preliminary conclusions could be made: (1) sigma nought (RADARSAT standard mode data) and DN (JERS-1 SAR and RADARSAT ScanSAR data) have limited usefulness for distinguishing early basalt lava flows from late trachyte flows or later trachyte flows from the old basement granitic rocks around Baikdu-san volcano, (2) surface geological structure features such as several faults and volcanic lava flow channels can easily be identified and mapped, and (3) routine application of unsupervised classification methods cannot be used for mapping any types of surface lava flow patterns.

  • PDF