• Title/Summary/Keyword: Granitic rocks

Search Result 298, Processing Time 0.025 seconds

Occurrence of U-minerals and Source of U in Groundwater in Daebo Granite, Daejeon Area (대전지역 대보 화강암내 우라늄 광물의 산출상태와 지하수내 우라늄의 기원)

  • Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.399-407
    • /
    • 2013
  • Some groundwater in Korea contains high U concentrations, especially where two-mica granite occurs in the Daejeon area. The elemental U in the two-mica granite is lower than that in normal granites elsewhere in the world, and U-minerals have yet to be reported in the two-mica granite in the Daejeon area. This study focuses on investigating the occurrence of U-minerals serving as the U source in groundwater. In situ gamma ray spectrometry and mineralogical analyses using EPMA were performed. U-count anomalies were identified in a granitic dyke and in hydrothermally altered granite. Uraniferous granitic dykes occur along the contact zone between the two-mica granite and mica-schist. The uraniferous parts within the two-mica granite are developed in the hydrothermally altered zone, which contains numerous quartz veinlets within a fracture zone. Hydrothermal alteration is dominated by potassic and prophylitic alteration. Uraninite is a common U-mineral in granitic dykes and hydrothermally altered granite. Coffinite and uranophane occur in the hydrothermally altered granite. All of these U-minerals are commonly accompanied by hydrothermal alteration minerals such as muscovite, chlorite, epidote, and calcite. It is concluded that granitic dyke and hydrothermally altered granite are the main source rocks of U in groundwater.

Rn Occurrences in Groundwater and Its Relation to Geology at Yeongdong Area, Chungbuk, Korea (충북 영동군의 복합 지질과 지하수 라돈 함량과의 연관성에 대한 고찰)

  • Moon, Sang-Ho;Cho, Soo-Young;Kim, Sunghyun
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.409-428
    • /
    • 2018
  • Yeongdong area is located on the border zone between Precambrian Yeongnam massif and central southeastern Ogcheon metamorphic belt, in which Cretaceous Yeongdong sedimentary basin exists. Main geology in this area consists of Precambrian Sobaeksan gneiss complex, Mesozoic igneous and sedimentary rocks and Quaternary alluvial deposits. Above this, age-unknown Ogcheon Supergroup, Paleozoic sedimentary rocks and Tertiary granites also occur in small scale in the northwestern part. This study focuses on the link between the various geology and Rn concentrations in groundwater. For this, twenty wells in alluvial/weathered zone and sixty bedrock aquifer wells were used. Groundwater sampling campaigns were twice run at wet season in August 2015 and dry season in March 2016. Some wells placed in alluvial/weathered part of Precambrian metamorphic rocks and Jurassic granite terrains, as well as Cretaceous porphyry, showed elevated Rn concentrations in groundwater. However, detailed geology showed the distinct feature that these high-Rn groundwaters in metamorphic and granitic terrains are definitely related to proximity of aquifer rocks to Cretaceous porphyry in the study area. The deeper wells placed in bedrock aquifer showed that almost the whole groundwaters in biotite gneiss and schist of Sobaeksan gneiss complex and in Cretaceous sedimentary rocks of Yeongdong basin have low level of Rn concentrations. On the other hand, groundwaters occurring in rock types of granitic gneiss or granite gneiss among Sobaeksan gneiss complex have relatively high Rn concentrations. And also, groundwaters occurring in the border zone between Triassic Cheongsan granites and two-mica granites, and in Jurassic granites neighboring Cretaceous porphyry have relatively high Rn concentrations. Therefore, to get probable and meaningful results for the link between Rn concentrations in groundwater and surrounding geology, quite detailed geology including small-scaled dykes or vein zones should be considered. Furthermore, it is necessary to take account of the spatial proximity of well location to igneous rocks associated with some mineralization/hydrothermal alteration zone rather than in-situ geology itself.

Net Penetration Rate of a Large Diameter Shield TBM in Hard Rock (대구경 Shield TBM의 암반층 굴착속도)

  • 박철환;송원경;신중호;천대성
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2001.10a
    • /
    • pp.115-120
    • /
    • 2001
  • In No. 1 tunnel for Kwnagju urban subway construction, net penetration rate of the shield TBM was analyzed. This tunnel of 540 m length is located in soil layers at starting and in hard rocks such as amphibolite and granitic gneiss at ending with 84 m length. The net penetration rate was dropped down to 2∼11 cm/hr in rock while 50∼80 cm/hr in soil. Theoretical penetration rate is analyzed in conditions of machine and rock in order to compare the actual net penetration rate. The relationships between net penetration rate and thrust force is also investigated in this report.

  • PDF

Oxygen isotope study on the hydrothermal alteration in the Wolf River Batholith, Wisconsin in U.S.A

  • Kim, Sun-Joon
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.19-31
    • /
    • 1993
  • Oxygen isotope compositions of whole rock and/or mineral separates (quartz and feldspar) have been determined for the granitic and related rocks from the Wolf River Batholith, Wisconsin. Hydrothermal alteration resulting in the decrease of ${\Delta}_{Q-F}$/ values was obaserved locally throughout the batholith. Feldspars of different colors (pink, gray and red) were separated whenever feasible and analyzed. Most red feldspars (An$_{10-30}$/) show the highest and constant ${\delta}^18O$/ values (9.3~10.0 permil) suggesting nearly complete isotope exchange with hydrothermal fluid. Based on ${\delta}^18O$/ values and the alteration temperatures (260~$350^{\circ}C$) estimated from fluid inclusion study, ${\delta}^18O$/ of fluid is calculated to be $5.0{\pm}1.4$ permil. Phanerozoic sedimentary formation water in Wisconsin is most likely the source of the fluid.

  • PDF

Alkali- Aggregate Reaction of the Crushed Stones Depending on the ASTM C 227 and C 1260 Test Method (ASTM C 227과 ASTM C 1260에 따른 쇄석 골재의 알칼리-골재 반응성)

  • 전쌍순;이효민;진치섭;황진연;이진성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.13-18
    • /
    • 2003
  • The concrete structure can be easily damaged due to alkali-aggregate reaction. The alkali-aggregate reaction is a reaction between the alkalies(K or Na) in cement and an unstable mineral of the aggregates. There are several test methods to identify alkali reactivity of aggregates. In general, crushed stones are tested by petrographic examination, chemical method and 모르타르 바 method. This study tested alkali-aggregate reactivity of crushed stones that has different rock types such as granitic, volcanic, metamorphic and sedimentary rocks. Samples are collected from 12 local aggregate production companies. Alkali-reactivity of various rock types was evaluated by using ASTM C 227 and C 1260, and compared the test results of two test methods.

  • PDF

Geologic Structure of Euiseong Sub-basin from Spectrally Correlated Geopotential Field Anomalies (포텐셜필드의 스텍트럼대비법을 이용한 의성소분지의 지구조 연구)

  • 김원균
    • Economic and Environmental Geology
    • /
    • v.33 no.3
    • /
    • pp.217-228
    • /
    • 2000
  • We use spectral correlation method to analyze gravity and magnetic anomalies of Euiseong Sub-basin for distribution of rock facies and gelogic structures. The analysis reveals distinct polarity between gravity and magnetic anomaly correlation ; intermediate to mafic intrusives, extrusives, and the Tertiary basin shows positive gravity (+G) and positive magnetic (+M) correlation. Granitic gneiss and felsic volcanics negative gravity 9-G) and negative magnetic (-M) correlation. The Palgongsan granite, felsic to mafic extrusives and Mesozoic granites are characterized by -G and + M correlation. +G and -M correlations in the sedimentary formations are interpreted by uplift of pre-Cretaceous basement rocks . The + G and + M correlation characteristics in northeastern part of Euiseong Sub-basin including the Tertiary sedimentary basin result from the uplift of crustal materials. Major axes of spectrally correlated amomalies have mostly NW-SE or NE-SW directions. The former is due to the intrusives along strike-slip faults, and the latter which is observed in sedimentary formations is related to geological structures of basement associated new insight into the boundary between Euiseong and Milyang Sub-basin.

  • PDF

Paleoproterozoic low-pressure metamorphism and crustal evolution in the northeastern Yeongnam Massif, Korea

  • Kim, Jeong-Min
    • Proceedings of the Petrological Society of Korea Conference
    • /
    • 2006.02a
    • /
    • pp.43-60
    • /
    • 2006
  • The Yeongnam Massif, one of Precambrian basements in Korean Peninsula, is characterized by widespread occurrence of low-pressure/high-temperature (LP/HT) schists and gneisses accompanying extensive anatexis and granitic magmatism. Metapelitic mineral assemblages define three progressive metamorphic zones pertinent to low-pressure facies series: cordierite, sillimanite and garnet zones with increasing temperature. Metamorphic grade ranges from lower amphibolite to lower granulite facies and metamorphic conditions reach ca. 750-800 C and 4-6 kbar in migmatitic gneisses. Migmatitic gneisses are prominent in the sillimanite and garnet zones. Textural and petrogenetic relationshipsin leucosome suggest that migmatitic gneiss is the product of anatexis of metasedimentary rocks. The migmatite formation during the prograde metamorphism is governed initially by fluid-present melting and subsequently by biotite-dehydration melting. The large amount of leucosomes in the sillimaniteand garnet zones can be explained by the fluid-present molting possibly triggered by an external supply of aqueous fluid. Field and geochronologic relationships between leucogranites and migmatitic gneisses further suggest that leucogranite has providedfluid and heat required for widespread migmatization.

  • PDF

A Study on the Relationship between Stream Patterns and Geologic Structures in South Korea (남한의 수계발달과 지질구조와의 관계에 관한 연구)

  • Kim, Kyu Han;Kim, Wan Sook
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.593-599
    • /
    • 1994
  • Drainage patterns were investigated to interpret the unknown geologic structure and geomorphic history in South Korea. Dendritic and rectangular patterns are most prominent ones developed in the granitic and sedimentary terrain. Drainage density ranges from 0.47 in the Nakdong river basin to 0.31 in the South Han river basin. Fine drainge texture is appeared in the Nakdong basin characterized by sedimentary beds of Mesozoic age, and coarse one are in the South Han river basin where Precambrian metamorphic rocks are dominated. Geological structures interpreted by stream pattern analysis are reasonally good agreement with the result by lineaments analysis and geological mapping.

  • PDF

Use of Magnesium Stable Isotope Signatures for the Petrogenetic Interpretation of Granitic Rocks (화강암류의 성인 해석에 대한 마그네슘 동위원소 자료의 활용)

  • Cheong, Chang-Sik;Ryu, Jong-Sik
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.221-227
    • /
    • 2014
  • With the advent of multi collector-inductively coupled plasma mass spectrometry, stable isotopic variations of non-traditional metal elements have provided important constraints on the sources of geologic materials. This review introduces the principles of magnesium isotopic fractionation and analytical methods. Recent case studies are also reviewed for the use of magnesium isotope signatures to decipher the source materials of I-, S-, and A-type granitoids in western North America, Australia, and China.

Geochemical Dispersion of Elements in Volcanic Wallrocks of Pyrophyllite Deposits in Milyang Area, Kyeongnam Province (밀양지역 납석광상 화산암질 모암에서의 원소들의 지구화학적 분산)

  • Oh, Dae-Gyun;Chon, Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.337-347
    • /
    • 1993
  • Mineralogical and geochemical studies on some pyrophyllite deposits in Milyang area, Kyeongnam Province (Milyang and Sungjin mine) were carried out in order to investigate dispersion patterns of chemical elements in altered volcanic wallrocks, and to interpret genetic environments of the pyrophyllite deposits. Cretaceous andesitic and tuffaceous rocks, and pyrophyllite ore specimens were collected from the dumps and drilling cores. Andesitic wallrocks were grouped as unaltered and altered rocks in the order of pyrophyllitization. Vertical dispersion patterns and relative mobilities of chemical elements in volcanic wallrocks were discussed. Geochemical environment in the Milyang area is characterized by the occurrence of boron minerals such as dumortierite coexisting with pyrophyllite ores, and tourmaline in granitic rocks. Unaltered andesitic rocks are mainly composed of plagioclase, pyroxene and hornblende, and were propylitized and saussuritized. Altered andesitic rocks are bleached and consist of quartz, sericite, pyrophyllite, kaolinite, chlorite and disseminated pyrite. Pyrophyllite ores are mainly composed of quartz, pyrophyllite, dumortierite, dissemianted pyrite and some diaspore. Enrichment of $SiO_2$, $Al_2O_3$, LOI (loss on ignition), As and Cr, and depletion of $K_2O$, $Na_2O$, CaO, MgO and total Fe are characteristic during alteration process. The REE patterns show that the pyrophyllite deposits could be originated from the continental margin volcanics. The $(La/Lu)_{cn}$ ratios of the pyrophyllite ores increase from 4.2~23.2 to 2.67~128.8 owing to strong acidic hydrothermal alteration. Vertical dispersion patterns of $Al_2O_3$, $K_2O$, $Na_2O$, CaO, MgO, $Fe_2O_3$ (total Fe), As, Au, Sb, Cr and Sr in the wallrocks show the location of orebodies. Particularly dispersion patterns of $Al_2O_3$ and Cr indicate the extension of orebodies. Anomalous distribution of Au, As and Sb in wallrocks shows potential for gold occurrence below the pyrophyllite deposits. Judging from the relative mobilities of elements in wallrocks, $Al_2O_3$ could be added from hydrothermal solution, and the silicified rone be formed from the excess of $SiO_2$.

  • PDF