• Title/Summary/Keyword: Granitic rocks

Search Result 298, Processing Time 0.024 seconds

Geology and Constituent Rocks, and Radioactive Values of the Eoraesan Area, Chungju, Korea (충주 어래산지역의 지질 및 구성암류와 방사능 값)

  • Kang, Ji-Hoon;Lee, Deok-Seon;Koh, Sang-Mo
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.85-96
    • /
    • 2018
  • The Neoproterozoic Gyemyeongsan Formation and the Mesozoic igneous rocks are distributed in the Eoraesan area, Chungju which is located in the northwestern part of Ogcheon metamorphic zone, Korea, and the rare earth element (REE) mineralized zone has been reported in the Gyemyeongsan Formation. We drew up the detailed geological map by the lithofacies classification, and measured the radioactivity values of the constituent rocks to understand the distribution and characteristics of the source rocks of REE ore body in this paper. It indicates that the Neoproterozoic Gyemyeongsan Formation is mainly composed of metapelitic rock, granitic gneiss, iron-bearing quartzite, metaplutonic acidic rock (banded type, fine-grained type, basic-bearing type, coarse-grained type), metavolcanic acidic rock, and the Mesozoic igneous rocks, which intruded it, are divided into pegmatite, biotite granite, gabbro, diorite, basic dyke. The constituent rocks of Gyemyeongsan Formation show a zonal distribution of mainly ENE trend, and the distribution of basic-bearing type of metaplutonic acidic rock (MPAR-B) is very similar to that of the previous researcher's REE ore body. The Mesozoic biotite granite is regionally distributed unlike the result of previous research. The radioactive value of MPAR-B, which has a range of 852~1217 cps (average 1039 cps), shows a maximum value among the constituent rocks. The maximum-density distribution of radioactive value also agrees with the distribution of MPAR-B. It suggests that the MPAR-B could be a source rock of the REE ore body.

Banded and Massive Iron Mineralization in Chungju Mine(I): Geology and Ore Petrography of Iron Ore Deposits (충주지역 호상 및 괴상 철광상의 성인에 관한 연구(I) : 지질 및 광석의 산출특성)

  • Kim, Gun-Soo;Park, Maeng-Eon;Enjoji, Mamoru
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.523-535
    • /
    • 1994
  • The strata-bound type iron ore bodies in the Chungju mine are interbedded with metamorphic rocks which are intruded by Mesozoic granitic rocks. The iron ore deposit occurs as layer or lens shape which are concordant with the metamorphic rocks. The iron ore is classified into banded and massive types based on the mode of texture and occurrence. Grain size and iron-oxides tend to become coarser toward massive ore than banded ore. Banded ores commonly contain internal layers defined by alternating magnetite- rich, hematite-rich, magnetite-hematite, and quartz-rich mesobands. The banded iron ore consists of hematite, magnetite, quartz, feldspar, and minor amounts of biotite, muscovite, chlorite, carbonates, epidote, allanite, and zircon. Massive ores which are characterized by high magnetite content occur in contact of granitic rocks. The massive iron ores consist mostly of magnetite and quartz, with minor amounts of hematite, pyrite, microcline, biotite, muscovite, chlorite, carbonates, epidote, allanite and zircon. Magnetite from banded and massive ores is almost pure $Fe_3O_4$ in composition, including 0.14 to 0.27 wt.% MnO and 0.10 to 0.15 wt.% MnO, respectively. Hematite of the ore contains 0.87 to 1.27 wt.% $TiO_2$ in banded ore and 3.44 to 6.96 wt.% $TiO_2$ in massive ore, respectively. Biotite shows a little compositional variation depending on ore types. Biotite of the banded ore has lower FeO, $TiO_2$ and $Al_2O_3$, and higher MgO and $SiO_2$ than the massive ore. The modes of occurrence and petrography of ore implies that massive ores might have been formed either under more reducing environments or higher temperature condition than banded ore. Banded ores might represent early episode of iron enrichment due to regional metamorphism. Massive ores might be related to the contact metamorphism resulting from late granitic intrusion.

  • PDF

Mineralogical and Geochemical Studies on Tourmaline in Felsite from the Daeduk Mountain, Daegu, South Korea (대구 대덕산 규장암체에서 산출되는 전기석에 대한 광물화학적 연구)

  • Woo, Hyeon Dong;Park, Seong Eun;Jang, Yun Deuk;Kim, Jung Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.85-95
    • /
    • 2014
  • The felsitic intrusives of Bulguksa granitic rocks of late Cretaceous in age are located at Mt. Daeduk, Daegu, where two different types of tourmalines are found. Two tourmalines show rounded and radiating in morphology and are found in separated region, but in same felsitic rocks. In this study, we investigate the chemical differences between two types of tourmaline and the effect of growing condition of the crystal on the its morphology. The rounded tourmaline has more amounts of Al and vacancy and less amounts of Ca, Na, K, Fe, Mn, Mg, which commonly occupy X and Y-site of the tourmaline. On the basis of the Diffusion-limited aggregation model, morphological irregularity indicates the active mobility of the magma. The radiating tourmaline, therefore, crystallized with active magma condition relatively, and the rounded tourmaline crystallized with stable magma condition created by decreasing temperature and the concentration of felsic components as the magma differentiate continually.

Genesis of the Lead-Zinc-Silver and Iron Deposits of the Janggun Mine, as Related to Their Structural Features Structural Control and Wall Rock Alteration of Ore-Formation (장군광산(將軍鑛山)의 연(鉛)·아연(亞鉛)·은(銀) 및 철(鐵) 광상(鑛床)의 성인(成因)과 지질구조(地質構造)와의 관계(關係) - 광상(鑛床) 생성(生成)의 지질구조(地質構造) 규제(規制)와 모암(母岩)의 변질(變質) -)

  • Lee, Hyun Koo;Ko, Suck Jin;Naoya, Imai
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.161-181
    • /
    • 1990
  • The lead-zinc-silver-iron deposits from the Janggun mine are of hydrothermal-metasomatic origin, characterized by the marked hydrothermal alteration of the wallrocks, such as hydrothermal manganese enrichment of carbonate rocks, silicification, chloritization, sericitization, montmorillonitization and argillic alteration. The ore deposits have been emplaced within the Janggun Limestone of Cambro-Ordovician age at the immediate contacts with apophyses injected from the Chunyang Granite plutons of Late Jurrasic age. They have been structurally controlled by fractures in the carbonate rocks and the irregular intrusive contacts of granitic rocks, and are closely associated with hypogene manganese carbonate deposits. In the mine nine seperate orebodies are being mined. On the basis of the petrological study, hydrothermal alteration zone of this mine may be divided into the following four zones from wallrock to orebody. (I) Primary calcite and dolomite zone${\rightarrow}$(II) dolomitic limestone zone${\rightarrow}$(III) dolomitic zone${\rightarrow}$(IV) rhodochrosite zone${\rightarrow}$ orebody. There was not recongnized Mn and Fe elements in the primary calcite and dolomite zone. But, in the dolomitic limestone and dolomite zone, calcite and dolomite were subjected to weak hydrothermal manganese enrichment and the grade of the manganese enrichment increase oreward. By means of electron probe microanalysis, it was found that manganoan dolomite occured between primary dolomite grains, cross the cleavage of the primary dolomite and around the dolomite grains. Above these result supports that the Janggun manganese carbonate deposits are of hydrothermal metasomatic origin.

  • PDF

The study on the Igneous Activity in the Southeastern Zone of the Ogcheon Geosynclinal Belt, Korea(I) with the Igneous Activity in Namweon-Geochang-Sangju Area (옥천지향사대(沃川地向斜帶) 동남대(東南帶)에서의 화성활동(火成活動)(I): 남원(南原)-거창(居昌)-상주(尙州) 지역(地域)을 중심(中心)으로)

  • Kim, Yong Jun;Park, Yong Seog;Choo, Seung Hwan;Oh, Mihn Soo
    • Economic and Environmental Geology
    • /
    • v.22 no.4
    • /
    • pp.355-370
    • /
    • 1989
  • Igneous rocks of study area consist of Pre-Cambrian orthogneiss, Devonian granite, Triassic foliated granites and Jurassic granites distributed along the southeast margin of Ogcheon Geosynclinal belt(SE-zone), and irregular shaped granitic stocks in the central part of the belt(C-zone). Anorthosite and gaabbro are also present in southern part of the SE-zone in the belt and intruded into gneiss complex of Ryongnam massif. Distribuition of foliated granites shows three linear arrangements which are composed of hornblende-biotite foliated granodiorite, porphyritic foliated granodiorite, biotite foliated granodiorite, leuco foliated granite and two mica foliated granite. Foliated granites generated by dextral strike slip movement at deep level. Jurassic granites composed of several rock facies are considered to be formed by differentiation of magma during Daebo Orogeny. A general trend of the chemical composition of these igneous rocks in study area suggests that most of them corresponding to calc-alkaline rock series was affected under orogeny and I-type granite except for two mica foliated granite. In chondrite normalised REE pattern of these igneous rocks, LREE shows more variable range and strong (-)Eu anomaly than HREE. Geochronological episodes of igneous activity from early Proterozoic to Cretaceous in SE-zone of Ogcheon Geosynclinal belt are two more Pre-Cambrian Orogeny, Devonian Orogeny(Variscan), Songrim Disturbance, Daebo Orogeny and Bulkuksa Disturbance.

  • PDF

A Study of Weathering Characteristics of Cretaceous Granite in Kimhae Area due to Artificial Weathering Processes (인공풍화과정에 의한 김해지역 백악기 화강암의 풍화특성에 관한 연구)

  • Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.32-42
    • /
    • 2012
  • It is very difficult to capture the weathering characteristics of rock because of limitation caused by time and space. A new scheme of experiment that includes physical and chemical weathering processes was implemented on Cretaceous granitic rock samples from Kimhae area to investigate the variations of geomechanical properties of deteriorated rocks due to artificial weathering processes. The seismic velocity was found to decrease with increasing artificial weathering cycle. Effective porosity and absorption tend to increase with artificial weathering processes. The amount of deterioration of rock samples depend on pre-test degree of weathering. Effective porosity, absorption and seismic velocity can be used as the measure of weathering characteristics of granite in the study area. Weathering is accelerated by combined effect of physical and chemical weathering processes. The new experimental methodology conducted in this study has strong capability to analyze the weathering characteristics of rocks.

Late Quaternary Stratigraphy and Depositional Environment of the Coastal Sediments along Moonamni, Kangwon Province, Korea (강원도 동해안 문암리 해안지층의 제4기 후기 퇴적층서화 환경)

  • 박용안;김수정
    • The Korean Journal of Quaternary Research
    • /
    • v.15 no.1
    • /
    • pp.29-35
    • /
    • 2001
  • The coastal deposits along Moonamni, Kangwon Province, Korea have been investigated by using deeply cored sediments(down to the basement rocks : Pre-Cambrian metamorphic rocks and granitic rocks) in order to understand and propose the late Quaternary stratigraphy and related major unconformities. Three major stratigraphic -depositional units are proposed. The neolithic cultural sites in the Moonamni area are considered as middle Holocene coastal dunes, which were developed due to active supply of beach sands from Unit I(Holocene transgressive deposit). Such coastal dune sediments are characteristic in the upper part of Unit I(Holocene in age). So far, Unit II and Unit III are considered as continental deposits, such as fluvial-swamp and alluvial deposit, respectively.

  • PDF

The study on the Igneous Activity in the Southeastern Zone(SE-zone) of the Ogcheon Geosynclinal Belt,Korea(III) (with the Igneous Activity between Naju and Namchang Area) (옥천지향사대(沃川地向斜帶) 동남대(東南帶)에서의 화성활동(火成活動)(III)(나주(羅州)-남창지역(南倉地域)을 중심(中心)으로))

  • Kim, Yong-Jun;Park, Young-Seog;Choo, Seung-Hwan;Oh, Min-Soo;Park, Jay-Bong
    • Economic and Environmental Geology
    • /
    • v.24 no.3
    • /
    • pp.261-276
    • /
    • 1991
  • The main aspect of this study are to clarify igneous activity of igneous rocks, which is a member of various intrusives and volcanics exposed in Naju-Namchang area of southern central zone of Ogcheon Geosynclinal Belt, southern part of Youngdong-Kwangju depression zone of tectonic provinces in Korea. Naju-Namchang area are subdivided into three rock belts based on occuring of Cretaceous granites. Three rock belts consist of foliated granites, Jurassic granites and Cretaceous granites in central granitic rock belt (C-C), and acidic tuff and lavas in northwest volcanic rock belt(C-NW) and southeast volcanic rock belt(C-SE). Chemical composition of these igneous rocks show mostly similar trend to the Daly's values on Harker diagram and correspond to VAG + Syn-COLG region on Pearce's discrimination diagram. These igneous rocks vary wide range in total REE amount(37.4-221.3ppm) characterized by enriched LREE content and steep negative slope in Eu(-) anomaly. It is concluded each synchronous granites which composed of serveral rock facies is considered to formed by differentiation of co-magma at continental margin, and igneous activity of study area are two more Pre-Cambrian Orogenies, Songrim Disturbance, Daebo Orogeny and Bulkuksa Disturbance.

  • PDF

The Geomorphological Features of Dongcheon-gugok in Korea (우리나라 동천구곡의 지형경관)

  • KEE, Keun-Doh
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.123-134
    • /
    • 2012
  • This work is to describe the geomorphological landscapes of of Dongcheon-gugok in Korea, and attempts to develop a basic data for traditional natural heritage. Dongcheon-gugok is a union of natural lanscape and human mind-activity. Therefore the study of natural landscape, which consists of geomorphological landscapes, provides a basic data for the use and conservation of traditional natural heritage. Dongcheon-gugok in Korea is almost distributed in the valley of mountainous areas of Taeback and Soback Mountain Ranges. The bedrocks of the areas of Dongcheon-gugok are almost granitic rocks and sedimentary rocks. The landscapes of Dongcheon-gugok is characterized by narrow meandering valley, so Gugok means nine-bended river. The elements of the geomorphological features is a broad flat rock with sheeting joints, joint-block seperated large blocks or tor, steep slope and rocky cliffs, pool, ripple, large or small scale waterfall, pot-hole, etc.

Heavy Mineral Analysis of the Cretaceous Hayang Group Sandstones, Northeastern Gyeongsang Basin (경상분지 북동부 백악기 하양층군 사암의 중광물분석)

  • 이용태;신영식;김상욱;이윤종;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.14-23
    • /
    • 1999
  • The northeastern part of the Gyeongsang Basin is widely covered by the Cretaceous Hayang Group (Aptian to Albian). The Hayang Group consists of the IIjig. Hupyeongdong, Jeomgog, and Sagog formations. Heavy mineral analysis was carried out to define the possible source rocks of the Haynag Group snadstones. Heavy minerals separated from IIjig, Hupyeongdong, and Jeomgog sandstones are hematite, ilmenite, leucoxene, magnetite, pyrite, actinolite, andalusite, apatite, biotite, chlorite, epidote, garnet, hornblende, kyanite, monazite, muscovite, rutile, sphene, spinel, staurolite, tourmaline, and zircon. Based on their close association and sensitiveness, the heavy mineral assemblages can be classified into 6 syutes: 1)apatite-green tourmaline-sphene-colorless/yellowish zircon; 2) colorless garnet-epidote-rutile-brown tourmaline; 3) rounded purple zircon-rounded tourmaline-rounded rutile; 4) augite-hornblende-color- less zircon; 5) epidote-garnet-sphene; and 6) blue tourmaline. The possible source rocks corresponding to each assemblage are 1) granitic rocks; 2) metamorphic rocks (schist and gneiss) ; 3) older sedimentary rocks; 4) andesitic rocks; 5) metamorphosed impure limestone; and 6) pegmatite, respectively. Previous paleocurrent data suggest that the sediments of the study area were mainly derived from the northeastern to southeastern directions. Thus, the most possible source areas would be the east extension part of the sobaegsan metamorphic complex to the northeast and the Cheongsong Ridge to the southeast.

  • PDF