• Title/Summary/Keyword: Granitic gneiss

Search Result 128, Processing Time 0.025 seconds

Taebaek Mountainous Region as a Natural Unit (자연 지역으로서의 태백 산지)

  • Kee, Keun-Doh
    • Journal of the Korean association of regional geographers
    • /
    • v.8 no.4
    • /
    • pp.468-479
    • /
    • 2002
  • This study attempts to characterize Taebaek mountainous region as a natural unit, relating to morphoclimatic milieu and landform development patterns of the mountains of each lithologic type. In the case of granitic mountains of Nothern parts of this region, the slopes presents more or less steep or irregular profile because of abundant microforms of exposed bedrocks and blocks. The development of such landscape is essentially due to differential weathering, associated with difference of joint density. In the case of gneissic mountains, the slopes are well regularized straight steep ones, due not only to generalized superficial weathering but also to massmovement of weathered materials. In the Middle parts of this region, especially in Taegwallyong area, with frequent alternations both of freezing-thawing and of snow accumulation-melting, the roles played by cryo-nival processes proved to be important in weathering of granite as well as in morpho-pedogenesis. In this area, weathered mantle, developed by cryogenic activity under humid condition of nival environment, covered almost all over the slopes. Although Southern parts of this region consist of limestone, on the mountainous volume, distribution of Karst forms are limited while predominate none karst forms such as cockpit type peaks, V-shaped type valleys dissecting steep slopes covered with thin deposits in thickness containing rock debris.

  • PDF

Element Mobility during the Weathering of Granitic Gneiss in the Yoogoo Area, Korea. (유구지역 화강암질 편마암의 풍화작용에 따른 원소의 거동)

  • 이석훈;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.39-51
    • /
    • 2001
  • 공주군 유구면 일대의 화강암질 편마암의 풍화작용에 따른 원소의 거동과 pH와 이차광물과의 관계를 XRF, ICP-AES, ICP-MS를 이용한 원소분석결과를 통하여 검토하였다. 이 지역의 암석은 pH6 내외의 산성환경, 침철석, 아나타제와 같은 다양한 이차광물을 생성하면서 심각한 화학조성의 변화를 초래했다. 주원소의 화학조성을 이용한 풍화지수는 토양층에서 79~88로 모암 중의 사장석이 용해되고 흑운모가 변질되어 캐올리광물의 생성이 활발한 방향으로 풍화작용이 진행되었다. 지표층으로 가면서 Al에 대한 주 원소의 거동은 Si, Ca, Na, K, P가 감소하고 Fe, Ti, Mn이 증가하는 경향을 보이며 pH가 낮은 풍화단면에서 주 원소의 변화량이 더 크다. 이 풍화대에서 Mg은 거의 일정하다. Li, As 모든 전이원소는 pH가 감소함에 따라 증가하며 특히 이들 원소는 Fe의 함량과 비례해서 증가해 침철석과 공침하였거나 표면에 흡착되어 있는 것으로 보인다. Ga은 Fe와 비례하기는 하지만 변화량은 전 풍화단면에서 일정하다. Zr, Mo, Sn, Cd은 pH에 변화에 상관없이 일정한 반면에 Rb, Sr, Ba, Y, Pb, Th, U 등은 감소하는 경향을 보인다. 특히 Rb 과 Sr은 Ca에 비례해서 감소한다. 희토류원소는 전 풍화단면에서 감소하는 경향을 보이는데 $Al_2$$O_3$에 대한 상대적인 변화량을 보면 경희토류원소는 사프롤라이트(saprolite)하부와 상부에서 부화되어 있고 중부 사프롤라이트와 토양층에서 감소하는 반면에 중희토류원소는 사프롤라이트 하부와 상부에서 감소하고 중부사프롤라이트 및 토양층에서 부화되는 경향을 보인다. 전반적으로 희토류원소의 원자번호가 클수록 손실율이 커진다. 이 풍화단면에서 원소의 거동은 각 풍화층의 pH와 생성된 이차광물의 조성에 지배를 받았다.

  • PDF

A High-resolution Seismic Survey on the Abandoned Tidal Flat in Shihwa Lake (시화호내 과거 조간대에서의 고해상 탄성파 탐사)

  • Hong, Jong Guk;Kim, Gi Yeong;Choe, Dong Rim
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.4
    • /
    • pp.251-258
    • /
    • 1999
  • A high-resolution seismic survey was conducted on the abandoned tidal flat in Shihwa Lake on the west coast of Korea. A portable vibrator was used as a seismic source and 217 shot gathers with 48-channel system were acquired. F-k filtering, residual static corrections and post-stack frequency filtering are found to be useful for signal enhancement. The overburden is divided into two seismic depositional units. Unit I is deposited in tidal environment characterized by parallel and high continuity reflection pattern. This unit comprises a dry layer (Unit Ia) and a wet layer (Unit Ib) having averagely 5 and 15 meters thick, respectively. Unit II unconformably overlain by Unit I exhibits discontinuity and hummocky reflection pattern, indicating complex channel-fill sediments in estuary. The maximum thickness of this unit is approximately 20 meter. Acoustic basement is considered as Precambrian granitic gneiss occurred in the surrounding area.

  • PDF

Interpretation of High-resolution Seismic Data in the Middle Part of the Pungam Basin, Korea (풍암분지 중부지역의 고해상도 탄성파자료 해석)

  • Kim, Gi Yeong;Heo, Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.201-208
    • /
    • 1999
  • A high-resolution seismic profile acquired across the middle part of the Pungam Basin, one of the Cretaceous sedimentary basins in Korea, has been interpreted to delineate subsurface geological structures. Boundary faults, intrusive bodies, and unconformity surfaces are identified on the seismic section. Basin fills are divided into five depositional units (Units I, II, III, IV, and V in descending order). The normal faults were formed by transtentional movement along a sinistral strike-slip fault zone. Unconsolidated sediments, a weathered layer, and sedimentary layers overly the Precambrian gneiss. The granite body intruded at the southeastern part contacts the adjacent sedimentary rocks by a near-vertical fault. Granitic intrusions caused tectonic fractures and normal faults of various sizes. An andesitic intrusive body indicates post-depositional magmatic intrusions. Continuous strike-slip movements have deformed basin-filling sediments (Units I and II).

  • PDF

Interpretation of Geological Samples Based on Ce and Nd Isotopic Ratio (Ce 및 Nd 동위원소비에 의한 지질 시료의 해석법)

  • 이승구;증전창정;청수양;조진화
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.135-141
    • /
    • 1996
  • La-Ce method is one of new geochronological methods developed recently. La and Ce are one of the rare earth elements, and, with Sm-Nd system. La-Ce system is very useful in understanding the evolution processes of crust and mantle. In this paper, I introduce the basic concept of the La-Ce method, and apply it in clarifying LREE pattern of source material of leuco-granitic gneisses from the Imweon area, Kangwon-do, and K-rich granite from the Anshan area in Liaoning Province, NE China. Sm-Nd data on the Anshan K-rich granites give an age of $3.16{\pm}0.06$ Ga($2{\sigma}$), with initial $^{143}Nd/^{144}Nd$=$0.50846{\pm}0.00005$ (${\epsilon}_{Nd}$=-1.5). On the basis of Ce and Nd isotopic ratio, leucogranitic gneiss and K-rich granite has been fractionated from the source material which had had similar to CHUR (chundritic uniform reservoir). And the initial ${\epsilon}_{Nd}$ value suggest that the crustal formation age of the Liaoning Province area, NE China was early Archean.

  • PDF

Geochemistry and Petrogenesis of Pan-african Granitoids in Kaiama, North Central, Nigeria

  • Aliyu Ohiani Umaru;Olugbenga Okunlola;Umaru Adamu Danbatta;Olusegun G. Olisa
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.259-275
    • /
    • 2023
  • Pan African granitoids of Kaiama is comprised of K-feldspar rich granites, porphyritic granites, and granitic gneiss that are intruded by quartz veins and aplitic veins and dykes which trend NE-SW. In order to establish the geochemical signatures, petrogenesis, and tectonic settings of the lithological units, petrological, petrographical, and geochemical studies was carried out. Petrographic analysis reveals that the granitoids are dominantly composed of quartz, plagioclase feldspar, biotite, and k-feldspar with occasional muscovites, sericite, and opaque minerals that constitute very low proportion. Major, trace, and rare earth elements geochemical data reveal that the rocks have moderate to high silica (SiO2=63-79.7%) and alumina (Al2O3=11.85-16.15) contents that correlate with the abundance of quartz, feldspars, and biotite. The rocks are calc-alkaline, peraluminous (ASI=1.0-<1.2), and S-type granitoids sourced by melting of pre-existing metasedimentary or sedimentary rocks containing Al, Na, and K oxides. They plot dominantly in the WPG and VAG fields suggesting emplacement in a post-collisional tectonic setting. On a multi-element variation diagram, the granitoids show depletion in Ba, K, P, Rb, and Ti while enrichment was observed for Th, U, Nd, Pb and Sm. Their rare-earth elements pattern is characterized by moderate fractionation ((La/Yb)N=0.52-38.24) and pronounced negative Eu-anomaly (Eu/Eu*=0.02-1.22) that points to the preservation of plagioclase from the source magma. Generally, the geochemical features of the granitoids show that they were derived by the partial melting of crustal rocks with some input from greywacke and pelitic materials in a typical post-collisional tectonic setting.

Geological Structures of the Limesilicates in the Songgang-ri, Cheongsong-gun, Korea (청송군 송강리 석회규산염암류의 지질구조)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.139-151
    • /
    • 2018
  • The Songgang-ri area, Cheongsong-gun, which is located in the Sobaeksan province of Yeongnam Massif near the southwestern boundary of Yeongyang subbasin of Gyeongsang Basin, consists of age unknown metamorphic rocks (banded gneiss, granitic gneiss, limesilicates) and age unknown igneous rock (granite gneiss) which intrudes them. This paper researched the geological structures of the Songgang-ri area from the geometric and kinematic features and the developing sequence of multi-deformed rock structures in the geological outcrops exposed about 170 m along the riverside of Yongjeoncheon in the eastern part of Songgang village, Songgang-ri. In the Songgang-ri geological outcrops are recognized three times (Fn, Fn+1, Fn+2) of folding, three times (Dk-I, Dk-II, Dk-III) intrusion of acidic dykes, one time of faulting, which are different in deformation and intrusion timing each other. These geological structures are at least formed by five times (Dn, Dn+1, Dn+2, Dn+3, Dn+4) of deformation. The Dn deformation is recognized by Fn fold which axial surface is parallel to the regional foliation. The Dn+1 intruded the (E)NE trending Dk-I dyke in the earlier phase and formed the NW trending Fn+1 fold in the later phase under compression of (E)NE-(W)SW direction. There are tight, isoclinal, intrafolial folds, boudinage, ${\sigma}$- or ${\delta}$-type boudins, asymmetric fold, C' shear band as the major deformed rock structures. The Dn+2 intruded the (N)NW trending Dk-II dyke in the earlier phase and formed NE trending Fn+2 fold in the later phase under compression of (N)NW-(S)SE direction. There are open fold and folded boudinage as those. The Dn+2 intruded the Dk-III dyke which cuts the Dk-I and Dk-II dykes and the axial surface of Fn+2 fold. The Dn+3 formed the left-handed reverse oblique-slip fault of NNE trend in which hanging wall moves into the SSE direction. Considering in that such five times of deformation recognized in the Songgang-ri geological outcrops are closely connected to the distribution and geological structure of the constituents in the more regional area as well as Songgang-ri area, the research result is expected to play a great data in clarifying and understanding the geological structure and its development process of the surrounding and boundary constituents of the Yeongnam Massif and Gyeongsang Basin.

A Study on the Conservation State and Plans for Stone Cultural Properties in the Unjusa Temple, Korea (운주사 석조문화재의 보존상태와 보존방안에 대한 연구)

  • Sa-Duk, Kim;Chan-Hee, Lee;Seok-Won, Choi;Eun-Jeong, Shin
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.285-307
    • /
    • 2004
  • Synthesize and examine petrological characteristic and geochemical characteristic by weathering formation of rock and progress of weathering laying stress on stone cultural properties of Unjusa temple of Chonnam Hwasun county site in this research. Examine closely weathering element that influence mechanical, chemical, mineralogical and physical weathering of rocks that accomplish stone cultural properties and these do quantification, wish to utilize by a basic knowledge for conservation scientific research of stone cultural properties by these result. Enforced component analysis of rock and mineralogical survey about 18 samples (pyroclastic tuff; 7, ash tuff; 4, granite ; 4, granitic gneiss; 3) all to search petrological characteristic and geochemical characteristic by weathering of Unjusa temple precinct stone cultural properties and recorded deterioration degree about each stone cultural properties observing naked eye. Major rock that constitution Unjusa temple one great geological features has strike of N30-40W and dip of 10-20NE being pyroclastic tuff. This pyroclastic tuff is ranging very extensively laying center on Unjusa temple and stone cultural properties of precinct is modeled by this pyroclastic tuff. Stone cultural propertieses of present Unjusa temple precinct are accomplishing structural imbalance with serious crack, and because weathering of rock with serious biological pollution is gone fairly, rubble break away and weathering and deterioration phenomenon such as fall off of a particle of mineral are appearing extremely. Also, a piece of iron and cement mortar of stone cultural properties everywhere are forming precipitate of reddish brown and light gray being oxidized. About these stone cultural properties, most stone cultural propertieses show SD(severe damage) to MD(moderate damage) as result that record Deterioration degree. X-ray diffraction analysis result samples of each rock are consisted of mineral of quartz, orthoclase,plagioclase, calcite, magnetite etc. Quartz and feldspar alterated extremely in a microscopic analysis, and biotite that show crystalline form of anhedral shows state that become chloritization that is secondary weathering mineral being weathered. Also, see that show iron precipitate of reddish brown to crack zone of tuff everywhere preview rock that weathering is gone deep. Tuffs that accomplish stone cultural properties of study area is illustrated to field of Subalkaline and Peraluminous, $SiO_2$(wt.%) extent of samples pyroclastic tuff 70.08-73.69, ash tuff extent of 70.26-78.42 show. In calculate Chemical Index of Alteration(CIA) and Weathering Potential Index(WPI) about major elements extent of CIA pyroclastic tuff 55.05-60.75, ash tuff 52.10-58.70, granite 49.49-51.06 granitic gneiss shows value of 53.25-67.14 and these have high value gneiss and tuffs. WPI previews that is see as thing which is illustrated being approximated in 0 lines and 0 lines low samples of tuffs and gneiss is receiving esaily weathering process as appear in CIA. As clay mineral of smectite, zeolite that is secondary weathering produce of rock as result that pick powdering of rock and clothing material of stone cultural properties observed by scanning electron micrographs (SEM). And roots of lichen and spore of hyphae that is weathering element are observed together. This rock deep organism being coating to add mechanical weathering process of stone cultural properties do, and is assumed that change the clay mineral is gone fairly in stone cultural properties with these. As the weathering of rocks is under a serious condition, the damage by the natural environment such as rain, wind, trees and the ground is accelerated. As a counter-measure, the first necessary thing is to build the ground environment about protecting water invasion by making the drainage and checking the surrounding environment. The second thing are building hardening and extirpation process that strengthens the rock, dealing biologically by reducing lichens, and sticking crevice part restoration using synthetic resin. Moreover, it is assumed to be desirable to build the protection facility that can block wind, sunlight, and rain which are the cause of the weathering, and that goes well with the surrounding environment.

Heavy Mineral Analysis of the Cretaceous Hayang Group Sandstones, Northeastern Gyeongsang Basin (경상분지 북동부 백악기 하양층군 사암의 중광물분석)

  • 이용태;신영식;김상욱;이윤종;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.14-23
    • /
    • 1999
  • The northeastern part of the Gyeongsang Basin is widely covered by the Cretaceous Hayang Group (Aptian to Albian). The Hayang Group consists of the IIjig. Hupyeongdong, Jeomgog, and Sagog formations. Heavy mineral analysis was carried out to define the possible source rocks of the Haynag Group snadstones. Heavy minerals separated from IIjig, Hupyeongdong, and Jeomgog sandstones are hematite, ilmenite, leucoxene, magnetite, pyrite, actinolite, andalusite, apatite, biotite, chlorite, epidote, garnet, hornblende, kyanite, monazite, muscovite, rutile, sphene, spinel, staurolite, tourmaline, and zircon. Based on their close association and sensitiveness, the heavy mineral assemblages can be classified into 6 syutes: 1)apatite-green tourmaline-sphene-colorless/yellowish zircon; 2) colorless garnet-epidote-rutile-brown tourmaline; 3) rounded purple zircon-rounded tourmaline-rounded rutile; 4) augite-hornblende-color- less zircon; 5) epidote-garnet-sphene; and 6) blue tourmaline. The possible source rocks corresponding to each assemblage are 1) granitic rocks; 2) metamorphic rocks (schist and gneiss) ; 3) older sedimentary rocks; 4) andesitic rocks; 5) metamorphosed impure limestone; and 6) pegmatite, respectively. Previous paleocurrent data suggest that the sediments of the study area were mainly derived from the northeastern to southeastern directions. Thus, the most possible source areas would be the east extension part of the sobaegsan metamorphic complex to the northeast and the Cheongsong Ridge to the southeast.

  • PDF

Geology and Constituent Rocks, and Radioactive Values of the Eoraesan Area, Chungju, Korea (충주 어래산지역의 지질 및 구성암류와 방사능 값)

  • Kang, Ji-Hoon;Lee, Deok-Seon;Koh, Sang-Mo
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.85-96
    • /
    • 2018
  • The Neoproterozoic Gyemyeongsan Formation and the Mesozoic igneous rocks are distributed in the Eoraesan area, Chungju which is located in the northwestern part of Ogcheon metamorphic zone, Korea, and the rare earth element (REE) mineralized zone has been reported in the Gyemyeongsan Formation. We drew up the detailed geological map by the lithofacies classification, and measured the radioactivity values of the constituent rocks to understand the distribution and characteristics of the source rocks of REE ore body in this paper. It indicates that the Neoproterozoic Gyemyeongsan Formation is mainly composed of metapelitic rock, granitic gneiss, iron-bearing quartzite, metaplutonic acidic rock (banded type, fine-grained type, basic-bearing type, coarse-grained type), metavolcanic acidic rock, and the Mesozoic igneous rocks, which intruded it, are divided into pegmatite, biotite granite, gabbro, diorite, basic dyke. The constituent rocks of Gyemyeongsan Formation show a zonal distribution of mainly ENE trend, and the distribution of basic-bearing type of metaplutonic acidic rock (MPAR-B) is very similar to that of the previous researcher's REE ore body. The Mesozoic biotite granite is regionally distributed unlike the result of previous research. The radioactive value of MPAR-B, which has a range of 852~1217 cps (average 1039 cps), shows a maximum value among the constituent rocks. The maximum-density distribution of radioactive value also agrees with the distribution of MPAR-B. It suggests that the MPAR-B could be a source rock of the REE ore body.