• Title/Summary/Keyword: Granet

Search Result 4, Processing Time 0.016 seconds

Dependence of Microstructure of Sintered $Y_3$Fe$_5$O$_{12}$ in Addition of CuO (CuO 첨가에 따른 $Y_3$Fe$_5$O$_{12}$ 소결체의 미세구조 변화)

  • 이재동;김광석;김성재;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1014-1019
    • /
    • 1998
  • As results of the study on the sinterbility of YIG at the low temperature using CuO as additive CuO com-pound which contain {{{{ { {Fe }_{2 }O }_{3 } }} was shown liquid in sintering process. YIG crystal dissolved into CuO compound liquid phase and then Y element which is considered no solubility in solid CuO compound moved to the grain during cooling. The abnormal grain growth up to 150${\mu}{\textrm}{m}$ at CuO 8.6mole% was shown due to shape accomdation reaction and local liquid distribution. The apparent density of YIG shows minimum at CuO 8.6 mole% due to abnormal grain growth and the saturation magnetization decrease dramatically at 32.5mole% due to orthoferrite formation.

  • PDF

The Fundamental Study on Properties of Concrete Using the Garnet with Industrial Wastes (산업부산물인 가네트를 이용한 콘크리트의 성질개선에 관한 기초적 연구)

  • Lim, Byoung-Ho;Park, Jung-Min;Kim, Tae-Gon;Kim, Wha-Jung
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.183-190
    • /
    • 1999
  • This paper investigated the possibility of appling to concrete through fundamental experiment for garnet, which was industrial wastes generated in kyung pook region, in aspects of development of new materials and recycling of industrial wastes due to shortage of natural resources. Consequently, garnet powder showed the possibility of admixture as showed in the chemical composition because the content of silica and alumina in relation to pozzolanic activity was about 50%. The time of setting was more or less diminished as the increasing of replacement ratio of garnet. In flow test, flow values tended to increase to some degree as the increasing of replacement ratio of garnet. Therefore, application of garnet was expected to improve the workability of concrete. The compressive strength of mortar replaced by garnet was respectively increased as compared with plain mortar and the maximum strength was showed in replaced by 10%, however a little different to the change of W/B ratio. Also, the possibility of admixture to reduce the amount of cement and to improve the property of concrete was showed as the strength of mortar replaced by garnet was comparable to that by existing admixture(silica fume, fly-ash).

Geology and Mineral Resources of the Ogcheon Zone: Mineralization in the Pyeongchang-Jucheon Area, Kangwon-Do, Korea (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -평창(平昌)~주천지역(酒泉地域)에 있어서의 광화작용(鑛化作用)-)

  • Yun, Suckew;So, Chil Sop;Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.1
    • /
    • pp.1-18
    • /
    • 1986
  • A group of 16 $Zn+Pb{\pm}Ag$ deposits distributed in the Pyeongchang-Jucheon area, Kangwon-do, South Korea, were semi-regionally investigated. These deposits are contact metasomatic and/or hydrothermal replacement types hosted in the carbonate-dominated Cambrian Machari Formation and Ordovician Ibtanri Formation, and also in the carbonate interbeds of the Precambrian argillic metasediments. Comparing some key aspects of the individual deposits, it is found that the ore deposits hosted in the Machari and Ibtanri Formations are mostly of steeply-dipping chimneys with or without skarn minerals and are rich in Ag and Pb>Zn in metal grade whereas those occuring in the carbonate interbeds of the Precambrian argillic metasediments are gently-dipping conformable lenticular orebodies mostly with skarn minerals and are generally poor in Ag and Zn>Pb. The skarn mineralization in the area appears to have occurred during the lower Cretaceous (118.7Ma) to mid-Cretaceous (107.8Ma) time assumed from the K-Ar dates of the Dowon and Pyeongchang granites which are closely associated with the skarn ore deposits. The Rb/Ba/Sr ratios of these granites indicate that they are of strongly differentiated anomalous granites, and the Nb vs. Y and Rb vs. Y+Nb plots fall on the field of volcanic arc setting. The contact aureoles are zoned, giving the sequence in order of increasing distance from igneous contact: garnet-wollastonite, granet-wollastonite-clinopyroxene and garnet-clinopyroxene in such as the Pyeongchang and Yeonwol 114 areas. Electron microprobe analyses reveal that garnets and clinopyroxenes are generally low in Fe and Mn. Garnets are grossular to intermediate grandite except for those from the Ogryong exoskarn which are richer in andradite, pyrope and spessartine fractions. This indicates that the oxidation state of skarn-forming environment at Ogryong was higher than at the other deposits. Clinopyroxenes are mostly salitic except for those from the Ogryong exoskarn which involve considerable amounts of hedenbergite and johansenite fractions. The ${\delta}^{18}O$ value of Jurassic biotite granite at Ogryong is higher (+10.21‰) than that of Cretaceous one at Chodun (+8.41‰). The ${\delta}^{13}C$ values of carbonate rocks range from -0.89‰ to 0.68‰ and the ${\delta}^{18}O$ values range from +11.91‰ to + 19.34‰ indicating that these carbonate rocks are of marine origin. However, the ${\delta}^{13}C$ values of skarn calcite and vein calcite are -4.80‰ and -12.92‰, and the ${\delta}^{18}O$ values are +5.56‰ and +10.32‰, respectively, indicating that these calcites are of hydrothermal origin. The ${\delta}^{34}S$ values of sulfide minerals range from +4.4‰ to +8.7‰ suggesting that the sulfurs are of magmatic origin.

  • PDF

Petrochemistry and Geologic Structure of Icheon Granitic Gneiss around Samcheog Area, Korea (삼척지역 이천화강편마암의 암석화학과 지질구조)

  • Cheong Won-Seok;Cheong Sang-Won;Na Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.1 s.43
    • /
    • pp.25-38
    • /
    • 2006
  • Metamophic rocks of Samcheog area, northeastern Yeongnam massif, was studied petrochemically. This area includes Precambrian Hosanri Formation (schists and gneisses) and granitoid (Icheon granitic gneiss, leucocratic granite and Hongjesa granite), Cambrian sedimentary rocks, and Cretaceous sedimentary and acidic volcanic rocks. Hosanri formation is composed of quartz+plagioclase+K-feldspar+biotite+muscovite+granet${\pm}$cordierite${\pm}$sillimanite. Mineral assemblage of biotite granitic gneiss, which is massive granodioritic rock with weak foliation, is similar to Hosanri formation. According to mineral assemblages, metamorphic rocks of studied area can be divided into two metamorphic zones (garnet and sillimanite zones). From Icheonri area, major, trace and rare earth element data of biotite granitic gneiss and luecocratic granite suggest that source rock is politic rocks of Hosanri formation and source magma was formed by anatexis and experienced fractionation of plagioclase. Trace element diagram show collisional environment such as syn-collisional, volcanic arc granite. Orientation of faults in study area have three maximum concentrations, $N54^{\circ}\;W/77^{\circ}\;SW,\;N49^{\circ}\;W/81^{\circ}\;NE\;and\;N10^{\circ}\;W/38^{\circ}\;NE$. Structure analysis suggests that faults in study area ware formed by uplift and compression. Faulting age is guessed after Tertiary because some shear joints is developed in dikes to intrusive Cretaceous acidic volcanic rock. Hosanri formation and Icheon granitic gneiss had experienced similar deformation history because they have maximum concentration to foliations, $N89^{\circ}\;E/55^{\circ}\;SE\;and\;N80^{\circ}\;E/45^{\circ}\;SE$, respectively.