• Title/Summary/Keyword: Gram-positive bacteria

Search Result 1,041, Processing Time 0.023 seconds

High-level mupirocin resistance in Gram-positive bacteria isolated from diseased companion animals

  • Sum, Samuth;Park, Hee-Myung;Oh, Jae Young
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.40.1-40.8
    • /
    • 2020
  • The purpose of this study was to investigate the high-level mupirocin resistance (HLMR) in Gram-positive bacteria isolated from companion animals. A total of 931 clinical specimens were collected from diseased pets. The detection of mupirocin-resistant bacteria and plasmid-mediated mupirocin resistance genes were evaluated by antimicrobial susceptibility tests, polymerase chain reactions, and sequencing analysis. Four-hundred and six (43.6%) bacteria were isolated and 17 (4.2%), including 14 staphylococci and 3 Corynebacterium were high-level mupirocin-resistant (MICs, ≥ 1,024 ug/mL) harboring mupA. Six staphylococci of HLMR strains had plasmid-mediated mupA-IS257 flanking regions. The results show that HLMR bacteria could spread in veterinary medicine in the near future.

Analysis of Bacterial Community Structure in Bulk Soil, Rhizosphere Soil, and Root Samples of Hot Pepper Plants Using FAME and 16S rDNA Clone Libraries

  • Kim, Jong-Shik;Kwon, Soon-Wo;Jordan, Fiona;Ryu, Jin-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.236-242
    • /
    • 2003
  • A culture-independent and -dependent survey of the bacterial community structure in the rhizosphere and soil samples from hot pepper plants was conducted using 16S rDNA clone library and FAME analyses. Out of the 78 clones sequenced, 56% belonged to Proteobacteria, 4% to high G+C Gram- positive group, 3% to Cytophyga-Flexibacter-Bacreroides, and 32% could not be grouped with any known taxonomic division. Among the 127 FAME isolates identified, 66% belonged to low G+C Gram-positive bacteria (Baciilus spp.) and 26% to high G+C Gram-positive bacteria. In a cluster analysis, the results for both methods were found to be strikingly dissimilar. The current study is the first comparative study of FAME and 165 rDNA clonal analyses performed on the same set of soil, rhizosphere soil, and root samples.

Effect of Sub-Minimal Inhibitory Concentrations of Antibiotics on Biofilm Formation and Coaggregation of Streptococci and Actinomycetes

  • Lee, So Yeon;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.189-196
    • /
    • 2015
  • Minimal inhibitory concentration (MIC) is the lowest antibiotic concentration that inhibits the visible growth of bacteria. Sub-minimal inhibitory concentration (Sub-MIC) is defined as the concentration of an antimicrobial agent that does not have an effect on bacterial growth but can alter bacterial biochemistry, thus reducing bacterial virulence. Many studies have confirmed that sub-MICs of antibiotics can inhibit bacterial virulence factors. However, most studies were focused on Gram-negative bacteria, while few studies on the effect of sub-MICs of antibiotics on Gram-positive bacteria. In this study, we examined the influence of sub-MICs of doxycycline, tetracycline, penicillin and amoxicillin on biofilm formation and coaggregation of Streptococcus gordonii, Streptococcus mutans, Actinomyces naeslundii, and Actinomyces odontolyticus. In this study, incubation with sub-MIC of antibiotics had no effect on the biofilm formation of S. gordonii and A. naeslundii. However, S. mutans showed increased biofilm formation after incubation with sub-MIC amoxicillin and penicillin. Also, the biofilm formation of A. odontolyticus was increased after incubating with sub-MIC penicillin. Coaggregation of A. naeslundii with S. gordonii and A. odontolyticus was diminished by sub-MIC amoxicillin. These observations indicated that sub-MICs of antibiotics could affect variable virulence properties such as biofilm formation and coaggregation in Gram-positive oral bacteria.

Halotolerant Spore-Forming Gram-Positive Bacterial Diversity Associated with Blutaparon portulacoides (St. Hill.) Mears, a Pioneer Species in Brazilian Coastal Dunes

  • Barbosa Deyvison Clacino;Irene Von Der Weid;Vaisman Natalie;Seldin Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.193-199
    • /
    • 2006
  • Halotolerant spore-forming Gram-positive bacteria were isolated from the root, rhizosphere, and non-rhizosphere soil of Blutaparon portulacoides. The different isolates were characterized genetically using an amplified ribosomal DNA restriction analysis (ARDRA), and phenotypically based on their colonial morphology, physiology, and nutritional requirements. Three different 16S rRNA gene-based genotypes were observed at a 100% similarity using the enzymes HinfI, MspI, and RsaI, and the phenotypic results also followed the ARDRA groupings. Selected strains, representing the different ARDRA groups, were analyzed by 16S rDNA sequencing, and members of the genera Halobaeillus, Virgibacillus, and Oceanobacillus were found. Two isolates showed low 16S rDNA sequence similarities with the closest related species of Halobacillus, indicating the presence of new species among the isolates. The majority of the strains isolated in this study seemed to belong to the species O. iheyensis and were compared using an AP-PCR to determine whether they had a clonal origin or not. Different patterns allowed the grouping of the strains according to Pearson's coefficient, and the resulting dendrogram revealed the formation of two main clusters, denoted as A and B. All the strains isolated from the soil were grouped into cluster A, whereas cluster B was exclusively composed of the strains associated with the B. portulacoides roots. This is the first report on the isolation and characterization of halotolerant spore-forming Gram-positive bacteria that coexist with B. portulacoides. As such, these new strains may be a potential source for the discovery of bioactive compounds with industrial value.

Aloe-Emodin-Mediated Photodynamic Therapy Attenuates Sepsis-Associated Toxins in Selected Gram-Positive Bacteria In Vitro

  • Otieno, Woodvine;Liu, Chengcheng;Ji, Yanhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1200-1209
    • /
    • 2021
  • Sepsis is an acute inflammatory response that leads to life-threatening complications if not quickly and adequately treated. Cytolysin, hemolysin, and pneumolysin are toxins produced by gram-positive bacteria and are responsible for resistance to antimicrobial drugs, cause virulence and lead to sepsis. This work assessed the effects of aloe-emodin (AE) and photodynamic therapy (PDT) on sepsis-associated gram-positive bacterial toxins. Standard and antibiotic-resistant Enterococcus faecalis, Staphylococcus aureus, and Streptococcus pneumonia bacterial strains were cultured in the dark with varying AE concentrations and later irradiated with 72 J/cm-2 light. Colony and biofilm formation was determined. CCK-8, Griess reagent reaction, and ELISA assays were done on bacteria-infected RAW264.7 cells to determine the cell viability, NO, and IL-1β and IL-6 pro-inflammatory cytokines responses, respectively. Hemolysis and western blot assays were done to determine the effect of treatment on hemolysis activity and sepsis-associated toxins expressions. AE-mediated PDT reduced bacterial survival in a dose-dependent manner with 32 ㎍/ml of AE almost eliminating their survival. Cell proliferation, NO, IL-1β, and IL-6 cytokines production were also significantly downregulated. Further, the hemolytic activities and expressions of cytolysin, hemolysin, and pneumolysin were significantly reduced following AE-mediated PDT. In conclusion, combined use of AE and light (435 ± 10 nm) inactivates MRSA, S. aureus (ATCC 29213), S. pneumoniae (ATCC 49619), MDR-S. pneumoniae, E. faecalis (ATCC 29212), and VRE (ATCC 51299) in an AE-dose dependent manner. AE and light are also effective in reducing biofilm formations, suppressing pro-inflammatory cytokines, hemolytic activities, and inhibiting the expressions of toxins that cause sepsis.

In vitro antibacterial availability of bioconverted ${\gamma}-linolenic$ acid

  • Kang, Sun-Chul;Shin, Seung-Yong;Kim, Hak-Ryul
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.307-308
    • /
    • 2005
  • Bioconverted hydroxy fatty acid from ${\gamma}-linolenic$ acid showed antibacterial activity against Gram-positive bacteria such as Bacillus subtilis (ATCC 6633), Listeria monocytogenes (ATCC 19166), Staphylococcus aureus (ATCC 6538) and S. aureus (KCTC 1916) and one Gram-negative bacteria, Pseudomonas aeruginosa (KCTC 2004) with MIC ranging from 250 to $750\;{\mu}g/ml$ against five of eleven bacteria tested.

  • PDF

Determination of Microbial Community as an Indicator of Kimchi Fermentation (김치발효의 지표로서 미생물군집의 측정)

  • Han, Hong-Ui;Lim, Chong-Rak;Park, Hyun-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.26-32
    • /
    • 1990
  • Attempts were made to define the characteristics of microbial community as an indicator of Kimchi fermentation. Determination of communities was carried out by simple Gram-stain, followed by direct microcopic counts. In room-temperature $(15^{\circ}C)$ fermentation, microbial succession was occurred in the order of communities of Gram-positive bacteria, yeasts and Gram-negative bacteria. It was characteristic that Gram-positive bacterial community was developed during the production of lactic acid, yeasts community was developed to cause rancidity, and Gram-negative bacterial community was relevant to maceration (or softening) as well as rancidity. The fluctuation of apparent Gram-negative reaction group might be used as a criterion of death or aging of Gram-positive bacterial populations. In low-temperature fermentation $(5^{\circ}C)$, however, it was found that yeasts and Gram-negative bacterial communities did not developed but only Gram-positive bacterial community did. It follows from these results mentioned above that maturity of Kimchi depends on the development of Cram-positive bacterial community. Thus, the size and occurrence of microbial community are avaiable for an indicator of Kimchi fermentation, and also determination of community could be a useful method to predict the maturity.

  • PDF

Comparison of inactivation and sensitivity of antibiotic resistance bacteria by ultrasound irradiation (초음파 조사에 의한 항생제 내성균 불활성화 및 감수성 변화)

  • Lee, Sunghoon;Nam, Seong-Nam;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.3
    • /
    • pp.191-204
    • /
    • 2019
  • The 20-kHz ultrasonic irradiation was applied to investigate bacterial inactivation and antibiotic susceptibility changes over time. Applied intensities of ultrasound power were varied at 27.7 W and 39.1 W by changing the amplitude 20 to 40 to three bacteria species (Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus). By 15-min irradiation, E. coli, a gram-negative bacterium, showed 1.2- to 1.6-log removals, while the gram-positive bacteria, Enterococcus faecalis and Staphylococcus aureus, showed below 0.5-log removal efficiencies. Antibiotic susceptibility of penicillin-family showed a dramatic increase at E. coli, but for other antibiotic families showed no significant changes in susceptibility. Gram-positive bacteria showed no significant differences in their antibiotic susceptibilities after ultrasound irradiation. Bacterial re-survival and antibiotic susceptibility changes were measured by incubating the ultrasound-irradiated samples. After 24-hour incubation, it was found that all of three bacteria were repropagated to the 2- to 3-log greater than the initial points, and antibiotic inhibition zones were reduced compared to ones of the initial points, meaning that antibiotic resistances were also recovered. Pearson correlations between bacterial inactivation and antibiotic susceptibility showed negative relation for gram-negative bacteria, E. coli., and no significant relations between bacterial re-survival and its inhibition zone. As a preliminary study, further researches are necessary to find practical and effective conditions to achieve bacteria inactivation.

Etiology of Bacteremia in Children With Hemato-Oncologic Diseases From 2013 to 2023: A Single Center Study

  • Sun Woo Park;Ji Young Park;Hyoung Soo Choi;Hyunju Lee
    • Pediatric Infection and Vaccine
    • /
    • v.31 no.1
    • /
    • pp.46-54
    • /
    • 2024
  • Purpose: This study aimed to identify the pathogens of bloodstream infection in children with underlying hemato-oncologic diseases, analyze susceptibility patterns, compare temporal trends with those of previous studies, and assess empirical antimicrobial therapy. Methods: Retrospective review study of children bacteremia in hemato-oncologic diseases was conducted at Seoul National University Bundang Hospital from January 2013 to July 2023. Results: Overall, 98 episodes of bacteremia were observed in 74 patients. Among pathogens isolated, 57.1% (n=56) were Gram-positive bacteria, 38.8% (n=38) were Gram-negative bacteria, and 4.1% (n=4) were Candida spp. The most common Gram-positive bacteria were coagulase-negative staphylococci (n=21, 21.4%) and Staphylococcus aureus, (n=14, 14.3%) whereas the most common Gram-negative bacteria were Klebsiella pneumoniae (n=16, 16.3%) and Escherichia coli (n=10, 10.2%). The susceptibility of Gram-positive bacteria to penicillin, oxacillin, and vancomycin was 11.5%, 32.7%, and 94.2%, respectively and the susceptibility of Gram-negative bacteria to cefotaxime, piperacillin/tazobactam, imipenem, gentamicin, and amikacin was 68.6%, 80%, 97.1%, 82.9%, and 91.4%, respectively. Methicillin-resistant S. aureus was detected in 1 strain and among Gram-negative strains, extended spectrum β-lactamase accounted for 28.9% (12/38). When analyzing the antibiotic susceptibility and empirical antibiotics, the mismatch rate was 25.5% (n=25). The mortality rate of children within 30 days of bacteremia was 7.1% (n=7). Conclusions: Empirical antibiotic therapy for bacteremia in children with hemato-oncologic diseases should be based on the local antibiogram in each institution and continuous monitoring is necessary.

Antibacterial activity of methanol extract of roots of Heracleum nepalense D Don. on bacteria causing diarrhoea

  • Bose, Sekhar K;Dewanjee, Saikat;Mandal, Subhash C
    • Advances in Traditional Medicine
    • /
    • v.7 no.3
    • /
    • pp.286-289
    • /
    • 2007
  • Heracleum nepalense D Don. (Umbelliferae) is a small shrub having high glabrescent stem found in stream banks in Sikkim. Various medicinal properties which include antidiarrhoeal, antiseptic, anti-influenzal etc. have been attributed for this plant in the traditional system of medicine in Sikkim. In present investigation the methanol extract of roots of Heracleum nepalense was subjected for its effectiveness against both Gram-positive and Gram-negative bacteria causing diarrhoea. The roots extract was tested for its minimum inhibitory concentration (MIC) against both Gram-positive and Gram-negative organisms causing diarrhoea. Further, the zones of inhibition produced by the crude extract against few sensitive strains was measured and compared with those of standard antibiotic ciprofloxacin. It is evident that the methanol extract is very active against the bacteria causing diarrhoea at low concentrations. The antibacterial efficacy of the root extract was found to decrease in the following order against different tested bacterial strains like Shigella dysenteriae, Escherichia coli, Shigella boydii, Vibrio cholerae, Salmonella typhimurium.