• 제목/요약/키워드: Gram positive

검색결과 1,524건 처리시간 0.026초

Lactobacillus spp.로부터 RNA 추출을 위한 신속/간단한 방법 (Simple/Rapid Method for RNA Preparation from Lactobacillus spp.)

  • 소재성;오은택;최민지;윤현식
    • KSBB Journal
    • /
    • 제17권3호
    • /
    • pp.311-313
    • /
    • 2002
  • L. crispatus KLB46는 Gram-positive bacteria로써 인간의 건강에 중요한 역할을 한다. 본 연구에서는 glass bead를 이용하여 세포벽을 파괴하고 hot phenol RNA 분리방법을 이용하여 RNA를 성공적으로 분리하였다. 또한 Iysozyme과 proteinase K 처리과정을 배제하여 시간적, 경제적인 면에서 유용한 방법임을 확인할 수 있었다. Gram-positive bacteria에서 glass bead를 이용한 RNA 분리는 특수한 조건에 의해 전사 되거나 반감기가 찬은 mRNA의 연구에 유용한 방법이라 사료된다.

CPC-222, A New Fluoroquinolone

  • Lee, Younha
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.12-12
    • /
    • 1997
  • CFC-222 is a novel fluoroqinolone antibacterial agent synthesized and under development by the Cheil Jedang Corporation, Korea. CFC-222 exerts the antibacterial activity by inhibition of bacterial DNA gyrase leading to bactericidal action. In in vitro and in vivo preclinical testing, CFC-222 has been shown to possess a broad spectrum of antibacterial activity. In particular CFC-222 is very potent against Gram-positive bacteria such as Staphylococcus spp., Streptocuccus spp. (in particular penicillin G-resistant and -susceptible S. pneumoniae) and Enterococcus spp. when compared to other quinolones (ciprofloxacin, ofloxacin or lomefloxacin). CFC-222 also showed potent activity against the methicillin resistant clinical isolates of S. aureus (MRSA). Against Gram-negative bacteria (E. coli, Pseudomonas and Sarcina) the activity of CFC-222 was slightly weaker than that of ciprofloxacin, but was more potent than that of ofloxacin or lomefloxacin. In urinary systemic infections caused by both Gram-positive and -negative bacteria, CFC-222 demonstrated a potent therapeutic efficacy in particular against Cram-positive bacteria S. aureus, S. pyrogen 203 and S. pneumonia TypeIII.

  • PDF

Ribosomally Synthesiszed Antimicrobial Peptides (Bacteriocins) in Lactic Acid Bacteria: A Review

  • Nes, Ingolf F.;Yoon, Sung-Sik;Diep, Dzung B.
    • Food Science and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.675-690
    • /
    • 2007
  • Bacteriocins in Gram-positive bacteria have attracted much attention because many have a strong antimicrobial activity also against bacteria outside the genera of the producers. Lantibiotics and the pediocin-like bactericins have attracted most attention since they kill a broad spectrum of Gram-positive bacteria including important pathogens. But many other promising Gram-positive bacteriocins have been thoroughly characterized. Recent studies have shown that bacteriocins may playa role in the intestinal flora to protect us against the food-borne pathogens. Bacterial genome sequencing has demonstrated that there may be an arsenal of such compounds and we are only seeing the top of the iceberg. The present review gives a short outlook of the field of bacteriocins with focus on lactic acid bacteria and includes recent findings.

Analysis of Bacterial Community Structure in Bulk Soil, Rhizosphere Soil, and Root Samples of Hot Pepper Plants Using FAME and 16S rDNA Clone Libraries

  • Kim, Jong-Shik;Kwon, Soon-Wo;Jordan, Fiona;Ryu, Jin-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권2호
    • /
    • pp.236-242
    • /
    • 2003
  • A culture-independent and -dependent survey of the bacterial community structure in the rhizosphere and soil samples from hot pepper plants was conducted using 16S rDNA clone library and FAME analyses. Out of the 78 clones sequenced, 56% belonged to Proteobacteria, 4% to high G+C Gram- positive group, 3% to Cytophyga-Flexibacter-Bacreroides, and 32% could not be grouped with any known taxonomic division. Among the 127 FAME isolates identified, 66% belonged to low G+C Gram-positive bacteria (Baciilus spp.) and 26% to high G+C Gram-positive bacteria. In a cluster analysis, the results for both methods were found to be strikingly dissimilar. The current study is the first comparative study of FAME and 165 rDNA clonal analyses performed on the same set of soil, rhizosphere soil, and root samples.

Effect of Acetic Acid on Bacteriocin Production by Gram-Positive Bacteria

  • Ge, Jingping;Kang, Jie;Ping, Wenxiang
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권9호
    • /
    • pp.1341-1348
    • /
    • 2019
  • Acetic acid is indirectly involved in cell center metabolism, and acetic acid metabolism is the core of central metabolism, affecting and regulating the production of bacteriocin. Bacteriocin is a natural food preservative that has been used in the meat and dairy industries and winemaking. In this paper, the effects of acetic acid on bacteriocin produced by Gram-positive bacteria were reviewed. It was found that acetic acid in the undissociated state can diffuse freely through the hydrophobic layer of the membrane and dissociate, affecting the production, yield, and activity of bacteriocin. In particular, the effect of acetic acid on cell membranes is summarized. The link between acetic acid metabolism, quorum sensing, and bacteriocin production mechanisms is also highlighted.

Bee Venom (Apis Mellifera) an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains - Bee Venom an Effective Potential for Bacteria-

  • Zolfagharian, Hossein;Mohajeri, Mohammad;Babaie, Mahdi
    • 대한약침학회지
    • /
    • 제19권3호
    • /
    • pp.225-230
    • /
    • 2016
  • Objectives: Mellitine, a major component of bee venom (BV, Apis mellifera), is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has been reported to have antibacterial properties. The aim of this study was to evaluate the antibacterial activity of BV against selected gram positive and gram negative bacterial strains of medical importance. Methods: This investigation was set up to evaluate the antibacterial activity of BV against six grams positive and gram negative bacteria, including Staphylococcus aureus (S. aureus), Salmonella typhimurium, Escherichia coli (E. coli) O157:H7, Pseudomonas aeruginosa, Burkholderia mallei and Burkholderia pseudomallei. Three concentrations of crude BV and standard antibiotic (gentamicin) disks as positive controls were tested by using the disc diffusion method. Results: BV was found to have a significant antibacterial effect against E. coli, S. aureus, and Salmonella typhyimurium in all three concentrations tested. However, BV had no noticeable effect on other tested bacteria for any of the three doses tested. Conclusion: The results of the current study indicate that BV inhibits the growth and survival of bacterial strains and that BV can be used as a complementary antimicrobial agent against pathogenic bacteria. BV lacked the effective proteins necessary for it to exhibit antibacterial activity for some specific strains while being very effective against other specific strains. Thus, one may conclude, that Apis mellifera venom may have a specific mechanism that allows it to have an antibacterial effect on certain susceptible bacteria, but that mechanism is not well understood.

Early-onset sepsis in a neonatal intensive care unit in Beni Suef, Egypt: bacterial isolates and antibiotic resistance pattern

  • Fahmey, Sameh Samir
    • Clinical and Experimental Pediatrics
    • /
    • 제56권8호
    • /
    • pp.332-337
    • /
    • 2013
  • Purpose: To identify the frequency of bacterial isolates in early-onset neonatal sepsis (EONS) and their antimicrobial resistance pattern. Methods: A retrospective study of EONS was conducted at the Beni Suef University Hospital from September 2008 to September 2012. A case of EONS was defined as an infant who had clinical signs of infection or who was born to a mother with risk factors for infection, and in whom blood culture obtained within 72 hours of life grew a bacterial pathogen. Results: Of 673 neonates screened, there were 138 positive blood cultures (20.5%) (confirmed EONS). Of the recovered isolates, 86.2% were gram-negative pathogens. Klebsiella pneumoniae (42.8%), Enterobacter cloacae (22.5%), and Escherichia coli (13.8%) were the commonest isolated organisms. The most common gram-positive microorganism was Staphylococcus aureus accounting for only 12 isolates (8.7%). All Klebsiella isolates and 93% of Enterobacter isolates were resistant to ampicillin. Gram-negative pathogens had the maximum overall sensitivity to imipenem, cefepime, and ciprofloxacin; whereas, gram-positive isolates were most susceptible to vancomycin, imipenem, and piperacillin. Conclusion: K. pneumoniae was the predominant causative bacteria of EONS followed by E. cloacae and E. coli. There was a high resistance to ampicillin. Imipenem had the maximum overall activity against the causative bacteria. Continuous surveillance is needed to monitor the changing epidemiology of pathogens and antibiotic sensitivity.

임프란트에 부착하는 세균의 동정 및 효과적인 항생제 선택 (ORAL MICROBES ASSOCIATED WITH TITANIUM IMPLANT AND THEIR ANTIBIOTIC SUSCEPTIBILITY)

  • 김선권;유선열
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제19권4호
    • /
    • pp.383-394
    • /
    • 1997
  • This study was done to examine adherence of oral bacteria to titanium dental implant and to know the effective prophylactic antibiotics using an in vivo model. Three samples each of the implant material were set in an acrylic resin flange and placed in the maxillary buccal sulcus of twenty volunteers. At 6- and 54-hour intervals, each sample was placed on blood agar plate (BAP) and chocolate agar, and then they were incubated and identified. Also antibiotic susceptibility test was performed. The results obtained mere as follows ; 1. The microorganisms were chain-like Gram positive cocci and staphyline Gram positive cocci, Gram positive bacilli in order of frequency were found at 6-hour and 54-hour samples by Gram staining. 2. Streptococci was found predominantly at both 6-hour and 54-hour samples, but number of streptococci was decreased as compared to 6-hour samples. 3. There was no difference in the bacterial species adherent to implant between 6-hour and 54-hour samples. 4. All the microbes were sensitive to AMC (amoxacillin clavulanic acid), chloramphenicol, quinolone and vancomycin in the antibiotic susceptibility test. Above results suggest that streptococcus are mainly adhered to titanium implant after implant was placed in the oral cavity and AMC is the most recommendable antibiotics to prevent the peri-implant inflammation.

  • PDF

Purification and preliminary analysis of the ATP-dependent unfoldase HslU from the gram-positive bacterium Staphylococcus aureus

  • Jeong, Soyeon;Ha, Nam-Chul;Kwon, Ae-Ran
    • Biodesign
    • /
    • 제6권4호
    • /
    • pp.96-99
    • /
    • 2018
  • The gram-positive bacterium Staphylococcus aureus is a common cause of abscesses, sinusitis and food poisoning. The emergence of antibiotic-resistant strains has caused significant clinical issues worldwide. The HslU-HslV complex was first identified as a prokaryotic homolog of eukaryotic proteasomes. HslU is an unfoldase that mediates the unfolding of the substrate proteins, and it works with the protease HslV in the complex. To date, the protein complex has been mostly studied in gram-negative bacteria. In this study, we report the purification and crystallization of the full-length HslU from S. aureus. The crystal diffracted X-rays to a $3.5{\AA}$ resolution, revealing that the crystals belong to space group $P2_1$, with unit cell parameters of a = 166.5, b = 189.6, $c=226.6{\AA}$, and ${\beta}=108.1^{\circ}$. We solved the phage problem by molecular replacement using the structure of HslU from Haemophilus influenzae as a search model. The cell content analysis with this molecular replacement solution revealed that 24 molecules are contained in the asymmetric unit. This structure provides insight into the structural and mechanistic difference of the HslUV complex of gram-positive bacteria.

CoO Thin Nanosheets Exhibit Higher Antimicrobial Activity Against Tested Gram-positive Bacteria Than Gram-negative Bacteria

  • Khan, Shams Tabrez;Wahab, Rizwan;Ahmad, Javed;Al-Khedhairy, Abdulaziz A.;Siddiqui, Maqsood A.;Saquib, Quaiser;Ali, Bahy A.;Musarrat, Javed
    • Korean Chemical Engineering Research
    • /
    • 제53권5호
    • /
    • pp.565-569
    • /
    • 2015
  • Envisaging the role of Co in theranautics and biomedicine it is immensely important to evaluate its antimicrobial activity. Hence in this study CoO thin nanosheets (CoO-TNs) were synthesized using wet chemical solution method at a very low refluxing temperature ($90^{\circ}C$) and short time (60 min). Scanning electron microscopy of the grown structure revealed microflowers ($2{\sim}3{\mu}m$) composed of thin sheets petals (60~80 nm). The thickness of each individual grown sheet varies from 10~20 nm. Antimicrobial activities of CoO-TNs against two Gram positive bacteria (Micrococcus luteus, and Staphylococcus aureus), and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were determined. A 98% and 65% growth inhibition of M. luteus and S. aureus respectively, was observed with $500{\mu}g/ml$ of CoO-TNs compared to 39 and 34% growth inhibition of E. coli and P. aeruginosa, respectively with the same concentration of CoO-TNs. Hence, synthesized CoO-TNs exhibited antimicrobial activity against Gram negative bacteria and an invariably higher activity against tested Gram positive bacteria. Therefore, synthesized CoO-TNs are less prone to microbial infections.