• Title/Summary/Keyword: Grain moisture content

Search Result 286, Processing Time 0.026 seconds

Classification Index and Grade Levels for Energy Efficiency Classification of Agricultural Dryers in Korea

  • Shin, Chang Seop;Park, Jin Geun;Kim, Kyeong Uk
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.96-100
    • /
    • 2014
  • Purpose: The objective of this study was to develop a classification index and the grade levels for a five-grade energy efficiency classification of agricultural dryers in Korea. Methods: The classification index and the grade levels were determined by using the performance test data published by the FACT over the last eight years to reflect a state of the art technology for agricultural dryers in Korea. The five grades were designed to have the classified dryers distributed normally over the grades with 15% for the $1^{st}$ grade, 20% for the $2^{nd}$ grade, 30% for the $3^{rd}$ grade, 20% for the $4^{th}$ grade and 15% for the $5^{th}$ grade. Results: The classification index was defined as the total amount of fuel and electrical energy consumed per 1% of the wet basis moisture content evaporated from a unit mass of grain or agricultural crops during the drying process: 1 MT of paddy rice for grain dryers and 1 kg of red pepper for agricultural crop dryers as the standard mass. Conclusions: The grade levels for the five-grade energy efficiency classification of grain dryers, kerosene dryers, and electric dryers were proposed in terms of the classification index value.

On the Surface Moisture Availability Parameters to Estimate the Surface Evaporation (증발량 추정을 위한 지표면 가용 수분 계수)

  • Jin, Byoung-Hwa;Hwang, Soo-Jin
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.41-41
    • /
    • 1995
  • In order to discuss the differences among the SMP(Surface Moisture Availability Parameter), by previous researchers on the basis of their own theoretical and empirical background, we assessed the SMP according to the soil types and volumetric soil water contents. The results are as follows. There are differences among all the five SMAPs. There''s a tendency that the larger grain size, the higher value of parameters. And they divided into two groups for their value: one group has parameters with exponential function and the other with cosine and linear function. The maximum difference between the two groups appears when the volumetric soil water contents are 0.07$m^3m^{-3}$ for sand, 0.l1$m^3m^{-3}$ for loam, 0.12 for clay, and 0.13$m^3m^{-3}$ for silt loam. So, these differences must be considered when we estimate the surface evaporation rate. From field data, the paddy field soil around Junam reservoir is classified as a silt has high wetness, 0.56. So, the parameter obtained from the field measurement is much higher than that of Clapp and Hornberger(1978)''s Table. This study treated the SMP for a certain point of time in winter season. But if we measured the soil water contents continuously, we could obtain better time-dependent parameter.

Simulation of Rough Rice Drying by Natural Air(I) (자연공기(自然空氣)에 의한 벼건조(乾燥) 시뮤레이션(I))

  • Chang, D.I.;Chung, D.S.;Pfost, H.B.;Calderwood, D.L.
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.118-128
    • /
    • 1983
  • Simulation model of natural air grain drying was discussed and modified to predict the changes of grain moisture content and dry matter loss of rough rice drying. The modified simulation model was then validated using actual test data. A series of simulated drying tests using official weather data for 15 years from Beaumont, Texas, was taken to make minimum airflow rate and maximum bed depth of rough rice drying by natural air, under different conditions of initial moisture content of rough rice, airflow rate and harvest date.

  • PDF

Kernel Characteristics and Germination Rate during . the Grain Filling in Super Sweet Corn (초당옥수수 등숙시기에 따른 종실특성 변화와 발아율)

  • 정태욱;김선림;차선우;김달웅
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.3
    • /
    • pp.176-180
    • /
    • 2000
  • The higher sugar and lower starch in super sweet corn may be due to modified endosperm genes sh, bt series, but its seeds have major limiting factors causing low germination and low seedling vigor, This study was conducted to determine what measurable kernel characteristics during the grain tiling period might be more useful as a guide to optimize harvest date for good seed quality in hybrid super sweet corn production. Artificial crossing in super sweet corn hybrid (Chodangok 1) was made on the same day, and ears were harvested from 18 days to 53 days after pollination at weekly intervals. Kernel weight, moisture content, hardness, endosperm rate, seedling height and storage nutrients such as sugars, protein, starch, and germination rate were measured for the kernels at each harvest. Super sweet corn hybrid, Chodangok 1 presented satisfactory germination rate above 70% when harvested on 39 to 46 days after pollination. Its storage nutrients at that time were 23.7-24.2% in starch content 5.5-5.9% in total sugars, 38.9-46.6% in kernel moisture, and 62.7-64.2% in endosperm rate. Germination rate was extremely high when harvested on 39 days after pollination. The black layer of Chodangok 1 could not be used as an indicator for seed harvest. These results suggested that optimum harvest date seems to be 39 days, and kernel moisture and starch content could be used as indications of kernel maturity in deciding when to harvest fer good seed quality in super sweet corn.

  • PDF

Integrating UAV Remote Sensing with GIS for Predicting Rice Grain Protein

  • Sarkar, Tapash Kumar;Ryu, Chan-Seok;Kang, Ye-Seong;Kim, Seong-Heon;Jeon, Sae-Rom;Jang, Si-Hyeong;Park, Jun-Woo;Kim, Suk-Gu;Kim, Hyun-Jin
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.148-159
    • /
    • 2018
  • Purpose: Unmanned air vehicle (UAV) remote sensing was applied to test various vegetation indices and make prediction models of protein content of rice for monitoring grain quality and proper management practice. Methods: Image acquisition was carried out by using NIR (Green, Red, NIR), RGB and RE (Blue, Green, Red-edge) camera mounted on UAV. Sampling was done synchronously at the geo-referenced points and GPS locations were recorded. Paddy samples were air-dried to 15% moisture content, and then dehulled and milled to 92% milling yield and measured the protein content by near-infrared spectroscopy. Results: Artificial neural network showed the better performance with $R^2$ (coefficient of determination) of 0.740, NSE (Nash-Sutcliffe model efficiency coefficient) of 0.733 and RMSE (root mean square error) of 0.187% considering all 54 samples than the models developed by PR (polynomial regression), SLR (simple linear regression), and PLSR (partial least square regression). PLSR calibration models showed almost similar result with PR as 0.663 ($R^2$) and 0.169% (RMSE) for cloud-free samples and 0.491 ($R^2$) and 0.217% (RMSE) for cloud-shadowed samples. However, the validation models performed poorly. This study revealed that there is a highly significant correlation between NDVI (normalized difference vegetation index) and protein content in rice. For the cloud-free samples, the SLR models showed $R^2=0.553$ and RMSE = 0.210%, and for cloud-shadowed samples showed 0.479 as $R^2$ and 0.225% as RMSE respectively. Conclusion: There is a significant correlation between spectral bands and grain protein content. Artificial neural networks have the strong advantages to fit the nonlinear problem when a sigmoid activation function is used in the hidden layer. Quantitatively, the neural network model obtained a higher precision result with a mean absolute relative error (MARE) of 2.18% and root mean square error (RMSE) of 0.187%.

The Effect of Soil Moisture Stress on the Growth of Barley and Grain Quality (토양수분 스트레스가 보리생육 및 종실품질에 미치는 영향)

  • Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.165-175
    • /
    • 1995
  • To determine the effect of soil moisture stress on growth of barley and grain quality, a pot experiment was carried out for two barley varieties(Olbori and Chogangbori) by using large plastic pot(52cm in diameter and 55cm in depth) filled with sandy loam soil under rain-controlled open green house. By means of measuring soil water potential with micro tensiometer and gypsum block installed at 10cm in soil depth, soil moisture was controlled by sub-irrigation at several irigation points such as -0.05bar, -0.2bar, -0.5bar, -1.0bar, -5.0bar and -10.0bar in soil water potential. The lower soil water potential was controlled, the shorter length of stem and internode became, and the more narrow stem diameter was. Leaf area was significantly decreased when soil water potential was controlled lower than -0.5bar, although chlorophyll content of flag and first leaves was not changed so much. Weight of grain and ear was significantly decreased when soil water potential was lower than -5.0bar and the highest grain yield was obtaind in a plot where soil water potential was controlled at -0.2bar. However, the most efficient water use of Olbori and Chogangbori was obtained at -0.5bar and -1.0bar in water potentials, respectively. Crude protain content, maximum viscosity, consistency and ${\beta}$-glucan content of barley flour increased as soil water potential significantly decreased, especially below -5.0bar, but gelatination temperature decreased as soil water potential decreased.

  • PDF

Grain Quality of Commercial Brand Rice Produced in Kyungpook Province (경북지역 브랜드쌀의 품질 특성)

  • Kwak, Young-Min;Kim, Chae-Eun;Sohn, Jae-Keun;Kang, Mi-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.7
    • /
    • pp.645-651
    • /
    • 2006
  • This study was performed to examine the relationship between quality characteristics and palatability on 21 varieties of commercial brand rice in North Kyeong-sang Province, Korea. The average percentages of translucent kernels, an important factor in rice quality, were the higher in the Ilpumbyeo cultivar than other six rice cultivars including Mihyangbyeo, Ilbanbyeo, Chuchungbyeo, Saechuchungbyeo, Hidomebore, and Nampyeongbyeo. The mean contents of amylose among commercial brand rice were not significantly different. The protein content was inversely associated with palatability (Toyo value). The sensory evaluation showed that clumpiness was positively correlated with the moisture content. The preference in color of cooked rice was increased as the percentage of translucent kernels increased. The roasted nutty flavor was highly correlated with the cooked rice with high protein content, while the chewiness was associated with high moisture and low amylose content.

Winter Wheat Grain Yield Response to Fungicide Application is Influenced by Cultivar and Rainfall

  • Byamukama, Emmanuel;Ali, Shaukat;Kleinjan, Jonathan;Yabwalo, Dalitso N.;Graham, Christopher;Caffe-Treml, Melanie;Mueller, Nathan D.;Rickertsen, John;Berzonsky, William A.
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • Winter wheat is susceptible to several fungal pathogens throughout the growing season and foliar fungicide application is one of the strategies used in the management of fungal diseases in winter wheat. However, for fungicides to be profitable, weather conditions conducive to fungal disease development should be present. To determine if winter wheat yield response to fungicide application at the flowering growth stage (Feekes 10.5.1) was related to the growing season precipitation, grain yield from fungicide treated plots was compared to non-treated plots for 19 to 30 hard red winter wheat cultivars planted at 8 site years from 2011 through 2015. At all locations, Prothioconazole + Tebuconazole or Tebuconazole alone was applied at flowering timing for the fungicide treated plots. Grain yield response (difference between treated and non-treated) ranged from 66-696 kg/ha across years and locations. Grain yield response had a positive and significant linear relationship with cumulative rainfall in May through June for the mid and top grain yield ranked cultivars ($R^2=54%$, 78%, respectively) indicating that a higher amount of accumulated rainfall in this period increased chances of getting a higher yield response from fungicide application. Cultivars treated with a fungicide had slightly higher protein content (up to 0.5%) compared to non-treated. These results indicate that application of fungicides when there is sufficient moisture in May and June may increase chances of profitability from fungicide application.

Spatial Variability Analysis of Rice Yield and Grain Moisture Contents (벼 수확량 및 곡물 수분함량의 공간변이 해석)

  • Chung, Ji-Hoon;Lee, Ho-Jin;Lee, Seung-Hun;Yi, Chang-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.2
    • /
    • pp.203-209
    • /
    • 2009
  • Yield monitoring is one of a precision agriculture technology that is used most widely. It is spatial variability analysis of yield information that should be attained with yield monitoring system development. This experiment was conducted to evaluate spatial variability of yield and grain moisture content in rice paddy field, and their relationships to rice productivity. It is necessary to minimize sampling interval for accurate yield map making or to control cutting width of rice combine. Considering small rice plots such as $0.2{\sim}0.4$ ha, optimum size of sampling plot was below 15 m more than 5 m in with and length. In variable rate treatment field, average yield was similar, but yield variation was reduced than conventional field. Gap of yield by another plot in same field was bigger than half of average yield than yield variation was significantly big. Therefore yield measuring flow sensor must be able to measure at least 300 kg/10a more than 1000 kg/10a. Variation of moisture content in same field was not big and spatial dependance did not appear greatly. But, variation between different field is appeared difference according to weather circumstance before harvesting. Change of spatial dependence of yield was not big, because of field variation of moisture content is not big.

Application of SAR DATA to the Study on the Characteristics of Sedimentary Environments in a Tidal Flat (SAR 자료를 이용한 갯벌 퇴적환경 특성 연구)

  • Kim, Kye-Lim;Ryu, Joo-Hyung;Kim, Sang-Wan;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.497-510
    • /
    • 2010
  • In this study, comparisons of the backscattering coefficients and the coherence values which had been extracted from SAR (Synthetic Aperture Radar) images such as JERS-1, ENVISAT and ALOS satellites with surface roughness, surface geometric and soil moisture content were carried out. As the results of analysis using the backscattering coefficient and coherence values from SAR images, the coherence was shown high in the region containing more of mud fraction due to higher viscosity of fine grain-size. A lot of tidal channels were well developed in the Ganghwa tidal flat, affecting the drainage of seawater and subsequent soil moisture content by exposure time of tidal flat. The backscattering coefficient. consequently, appeared to be lower in sand flat and mix flat with decrease of soil moisture. In contrast, most mud flats were distributed at high elevation so that soil moisture was not much influenced by seawater. The backscattering coefficient in mud flat seemed to have a relationship with the density of tidal channel. In addition, lowering backscattering coefficients in the all Ganghwa tidal flat was observed when surface remnant water increased according to the amount of rainfall. The correlation between backscattering coefficient, coherence and sediment environment factors in the Ganghwa tidal flat was investigated. In the future, more quantitative spatial analysis will be helpful to well understand the sedimentary influence of various sediment environment factors.