• Title/Summary/Keyword: Gradient-echo EPI

Search Result 31, Processing Time 0.033 seconds

A Study on Dynamic Susceptibility-weighted Perfusion MR Imaging at High Magnetic Filed : Comparison of Gradient Echo-EPI and Spin Echo-EPI (고 자장에서 Dynamic Susceptibility Contrast 효과에 관한 연구 : Gradient EPI와 Spin-EPI기법의 비교)

  • Goo, Eun-Hoe;Chae, Hong-In;Park, Jong-Bae;Im, Cheong-Hwan;Kim, Jeong-Koo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.2
    • /
    • pp.11-16
    • /
    • 2007
  • We have evaluated and compared of gradient echo and spin echo EPI for compensating about deeply distortion aspect in case of post-operation patients in magnetic resonance image. A total of 100 patients were performed on 3.0 T(GE Signa Excite E2, USA) with 8ch head coil. As a result of analysis, The SNRs of whiter and gray matter areas were 36.74 $\pm$ 06 and 39.96 $\pm$ 09 in the gradient echo EPI, the SNRs which white and gray matter areas were slightly higher than gradient echo EPI(P<0.005, paired student t-test). It was 46.24 $\pm$ 11 and 51.38 $\pm$ 13 in gradient and spin echo EPI, respectively. The signal intensity in the whiter and gray matter areas also were 87.33 $\pm$ 15.24 and 140.66 $\pm$ 13.45 in the gradient echo EPI techniques, The signal intensity of gradient echo EPI showed higher values compared to spin echo EPI. Otherwise, gradient echo EPI technique is distortion enough to operation wound and edge of the image, while spin echo EPI technique did not appear almost. In this point, the spin echo EPI technique, after surgical operation according to patient state beside gradient echo EPI techniques that signalbeside gradient echo EPI techniques that signal intensity is high and patient's case which image distortion is serious by metal etc, will be provide the useful information in adults and pediatric patients.

  • PDF

Functional MR Imaging of Cerebral Motor Cortex on 3 Tesla MR Imaging : Comparison between Gradient and Spin-Echo EPI Techniques (3T에서 뇌 운동피질의 기능적 자기공명영상 연구 : Gradient-Echo와 Spin-Echo EPI의 비교)

  • Goo, Eeu-Hoe;Chang, Hye-Won;Chung, Hwan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.2
    • /
    • pp.31-38
    • /
    • 2007
  • To evaluate the accuracy and extent in the localization of cerebral motor coutex activation using a gradient- echo echo planar imaging(GE-EPI) compared to spin-echo echo planar iimaging(SE-EPI) on 3T MR imaging. Functional MR imaging of cerebral motor cortex activation was examined in GE-EPI and SE-EPI in five healthy male volunteers. A right finger movement was accomplished with a paradigm of 6 task and rest, periods and the cross-correlation was used for a statistical mapping algorithm. We evaluated any sorts of differenced of the time seried and the signal intensity changes between the rest and task periods obtained with two technoques. The qualitative analysis was distributed with activation sites of large veins and small veins by using two techniques and was found that both the techniques were clinically uesful for delineating large veins and small veins in fMRL Signal intensity charge of the rest and activation periods provided simmilar activations in both methods(GE-EPI : 0.93$\pm$0.11, SE-EPI : 0.80$\pm$.015) but the signal intensity in GE-EPI(133.95$\pm$15.76) was larger than in SE-EPI(74.5$\pm$18.90). The average SNRs of EPI raw data were higher at SMA in SE-EPI(48.54$\pm$12.37) than GE-EPI(41.4$\pm$12.54) and at M1 in SE-EPI(43.24$\pm$11.77) than GE-EPI(38.27$\pm$6.53). The localization of activation voxels of the GE-EPI showed a larger vein but the SE-EPI generally showed small vein. Then the analysis results of the two techniques were used for a statistacal paired student t-test. SE-EPI was found clinically useful for localizing the cerebral moter cortex cativation on 3.0T, but showed a little different activation patterns comparad to GE-EPI. In conclusion, SE-EPI may be feasible and can detect true cortical activation from capillaries and GE-EPI can obtain the large veins in the motor cortex activation on 3T MR imaging.

  • PDF

Hyperacute Intracerebral Hemorrhage : Comparison of EPI and Other MR Sequence (두 개내 초급성 출혈 : EPI와 다른 MR 영상 기법의 비교)

  • 김정희;김옥화;서정호;박용성
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.167-172
    • /
    • 1999
  • Purpose : To evaluate the detection rate of hyperacute intracerebral hemorrhage in echo planar imaging (EPI) and other MR sequences. materials and Methods : Intracerebral hemorrhage was experimentally induced in ten rats. EPI, fast spin-echo (FSE) T2 weighted images, fluid attenuated inversion recovery (FLAIR), spin-echo (SE) T1 weighted images and gradient echo (GE) T1 weight ed images of rat's brains were obtained 2 hours after onset of intracerebral hemorrhage. EPI and FSE T2 images were additionally obtained 30 min and 1 hour after onset of hemorrhage in 3 and 6 rat, repeatedly, For objective visual assessment, discrimination between the lesion and normal brain parenchyma was evaluated on various MR sequences by three radiologists. For quantitative assessment, contrast-to-noise ratio (CNR) was calculated fro hemorrhage-normal brain parenchyma. Statistical analysis was performed usning the Wilcoxon-Ranks test. Results : EPI, FLAIR, and FSE T2 images showed high signal intensity lesions. The lesion discrimination was easier on EPI than on other sequences, and also EPI showed higher signal intensity for the subjective visual assessment. In quantitative evaluation, CNR of the hemorrhagic lesion versus normal brain parenchyma were higher on EPI and FLAIR images (p<0.01). There was no difference in CNR between EPI and FLAIR (p>0.10). On MR images obtained 30 minutes and 1 hour after the onset of intracerebral hemorrhage, the lesion detection was feasible on both EPI and FSE T2 images showing high signal intensity. Conclusion : EPI showed higher detection rate as compared with other MR sequences and could be useful in early detection and evaluation of intracerebral hemorrhage.

  • PDF

${T_2}weighted$- Half courier Echo Planar Imaging

  • 김치영;김휴정;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.5 no.1
    • /
    • pp.57-65
    • /
    • 2001
  • Purpose : $T_2$-weighted half courier Echo Planar Imaging (T2HEPI) method is proposed to reduce measurement time of existing EPI by a factor of 2. In addition, high $T_2$ contrast is obtained for clinical applications. High resolution single-shot EPI images with $T_2$ contrast are obtained with $128{\times}128$ matrix size by the proposed method. Materials and methods : In order to reduce measurement time in EPI, half courier space is measured, and rest of half courier data is obtained by conjugate symmetric filling. Thus high resolution single shot EPI image with $128{\times}128$ matrix size is obtained with 64 echoes. By the arrangement of phase encoding gradients, high $T_2$ weighted images are obtained. The acquired data in k-space are shifted if there exists residual gradient field due to eddy current along phase encoding gradient, which results in a serious problem in the reconstructed image. The residual field is estimated by the correlation coefficient between the echo signal for dc and the corresponding reference data acquired during the pre-scan. Once the residual gradient field is properly estimated, it can be removed by the adjustment of initial phase encoding gradient field between $70^{\circ}$ and $180^{\circ}$ rf pulses. Results : The suggested T2EPl is implemented in a 1.0 Tela whole body MRI system. Experiments are done with the effective echo times of 72ms and 96ms with single shot acquisitions. High resolution($128{\times}128$) volunteer head images with high $T_2$ contrast are obtained in a single scan by the proposed method. Conclusion : Using the half courier technique, higher resolution EPI images are obtained with matrix size of $128{\times}128$ in a single scan. Furthermore $T_2$ contrast is controlled by the effective echo time. Since the suggested method can be implemented by software alone (pulse sequence and corresponding tuning and reconstruction algorithms) without addition of special hardware, it can be widely used in existing MRI systems.

  • PDF

Functional MR Imaging of Cerbral Motor Cortex: Comparison between Conventional Gradient Echo and EPI Techniques (뇌 운동피질의 기능적 영상: 고식적 Gradient Echo기법과 EPI기법간의 비교)

  • 송인찬
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.109-113
    • /
    • 1997
  • Purpose: To evaluate the differences of functional imaging patterns between conventional spoiled gradient echo (SPGR) and echo planar imaging (EPI) methods in cerebral motor cortex activation. Materials and Methods: Functional MR imaging of cerebral motor cortex activation was examined on a 1.5T MR unit with SPGR (TRfrE/flip angle=50ms/4Oms/$30^{\circ}$, FOV=300mm, matrix $size=256{\times}256$, slice thickness=5mm) and an interleaved single shot gradient echo EPI (TRfrE/flip angle = 3000ms/40ms/$90^{\circ}$, FOV=300mm, matrix $size=128{\times}128$, slice thickness=5mm) techniques in five male healthy volunteers. A total of 160 images in one slice and 960 images in 6 slices were obtained with SPGR and EPI, respectively. A right finger movement was accomplished with a paradigm of an 8 activation/ 8 rest periods. The cross-correlation was used for a statistical mapping algorithm. We evaluated any differences of the time series and the signal intensity changes between the rest and activation periods obtained with two techniques. Also, the locations and areas of the activation sites were compared between two techniques. Results: The activation sites in the motor cortex were accurately localized with both methods. In the signal intensity changes between the rest and activation periods at the activation regions, no significant differences were found between EPI and SPGR. Signal to noise ratio (SNR) of the time series data was higher in EPI than in SPGR by two folds. Also, larger pixels were distributed over small p-values at the activation sites in EPI. Conclusions: Good quality functional MR imaging of the cerebral motor cortex activation could be obtained with both SPGR and EPI. However, EPI is preferable because it provides more precise information on hemodynamics related to neural activities than SPGR due to high sensitivity.

  • PDF

Accelerated Resting-State Functional Magnetic Resonance Imaging Using Multiband Echo-Planar Imaging with Controlled Aliasing

  • Seo, Hyung Suk;Jang, Kyung Eun;Wang, Dingxin;Kim, In Seong;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.4
    • /
    • pp.223-232
    • /
    • 2017
  • Purpose: To report the use of multiband accelerated echo-planar imaging (EPI) for resting-state functional MRI (rs-fMRI) to achieve rapid high temporal resolution at 3T compared to conventional EPI. Materials and Methods: rs-fMRI data were acquired from 20 healthy right-handed volunteers by using three methods: conventional single-band gradient-echo EPI acquisition (Data 1), multiband gradient-echo EPI acquisition with 240 volumes (Data 2) and 480 volumes (Data 3). Temporal signal-to-noise ratio (tSNR) maps were obtained by dividing the mean of the time course of each voxel by its temporal standard deviation. The resting-state sensorimotor network (SMN) and default mode network (DMN) were estimated using independent component analysis (ICA) and a seed-based method. One-way analysis of variance (ANOVA) was performed between the tSNR map, SMN, and DMN from the three data sets for between-group analysis. P < 0.05 with a family-wise error (FWE) correction for multiple comparisons was considered statistically significant. Results: One-way ANOVA and post-hoc two-sample t-tests showed that the tSNR was higher in Data 1 than Data 2 and 3 in white matter structures such as the striatum and medial and superior longitudinal fasciculus. One-way ANOVA revealed no differences in SMN or DMN across the three data sets. Conclusion: Within the adapted metrics estimated under specific imaging conditions employed in this study, multiband accelerated EPI, which substantially reduced scan times, provides the same quality image of functional connectivity as rs-fMRI by using conventional EPI at 3T. Under employed imaging conditions, this technique shows strong potential for clinical acceptance and translation of rs-fMRI protocols with potential advantages in spatial and/or temporal resolution. However, further study is warranted to evaluate whether the current findings can be generalized in diverse settings.

Assessment of the Cerebrospinal Fluid Effect on the Chemical Exchange Saturation Transfer Map Obtained from the Full Z-Spectrum in the Elderly Human Brain

  • Park, Soonchan;Jang, Joon;Oh, Jang-Hoon;Ryu, Chang-Woo;Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.139-149
    • /
    • 2019
  • Purpose: With neurodegeneration, the signal intensity of the cerebrospinal fluid (CSF) in the brain increases. The objective of this study was to evaluate chemical exchange saturation transfer (CEST) signals with and without the contribution of CSF signals in elderly human brains using two different 3T magnetic resonance imaging (MRI) sequences Methods: Full CEST signals were acquired in ten subjects (Group I) with a three-dimensional (3D)-segmented gradient-echo echo-planar imaging (EPI) sequence and in ten other subjects (Group II) with a 3D gradient and spin-echo (GRASE) sequence using two different 3T MRI systems. The segmented tissue compartments of gray and white matter were used to mask the CSF signals in the full CEST images. Two sets of magnetization transfer ratio asymmetry (MTRasym) maps were obtained for each offset frequency in each subject with and without masking the CSF signals (masked and unmasked conditions, respectively) and later compared using paired t-tests. Results: The region-of-interest (ROI)-based analyses showed that the MTRasym values for both the 3D-segmented gradient-echo EPI and 3D GRASE sequences were altered under the masked condition compared with the unmasked condition at several ROIs and offset frequencies. Conclusions: Depending on the imaging sequence, the MTRasym values can be overestimated for some areas of the elderly human brain when CSF signals are unmasked. Therefore, it is necessary to develop a method to minimize this overestimation in the case of elderly patients.

High Resolution 3D Magnetic Resonance Fingerprinting with Hybrid Radial-Interleaved EPI Acquisition for Knee Cartilage T1, T2 Mapping

  • Han, Dongyeob;Hong, Taehwa;Lee, Yonghan;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.3
    • /
    • pp.141-155
    • /
    • 2021
  • Purpose: To develop a 3D magnetic resonance fingerprinting (MRF) method for application in high resolution knee cartilage PD, T1, T2 mapping. Materials and Methods: A novel 3D acquisition trajectory with golden-angle rotating radial in kxy direction and interleaved echo planar imaging (EPI) acquisition in the kz direction was implemented in the MRF framework. A centric order was applied to the interleaved EPI acquisition to reduce Nyquist ghosting artifact due to field inhomogeneity. For the reconstruction, singular value decomposition (SVD) compression method was used to accelerate reconstruction time and conjugate gradient sensitivity-encoding (CG-SENSE) was performed to overcome low SNR of the high resolution data. Phantom experiments were performed to verify the proposed method. In vivo experiments were performed on 6 healthy volunteers and 2 early osteoarthritis (OA) patients. Results: In the phantom experiments, the T1 and T2 values of the proposed method were in good agreement with the spin-echo references. The results from the in vivo scans showed high quality proton density (PD), T1, T2 map with EPI echo train length (NETL = 4), acceleration factor in through plane (Rz = 5), and number of radial spokes (Nspk = 4). In patients, high T2 values (50-60 ms) were seen in all transverse, sagittal, and coronal views and the damaged cartilage regions were in agreement with the hyper-intensity regions shown on conventional turbo spin-echo (TSE) images. Conclusion: The proposed 3D MRF method can acquire high resolution (0.5 mm3) quantitative maps in practical scan time (~ 7 min and 10 sec) with full coverage of the knee (FOV: 160 × 160 × 120 mm3).