• Title/Summary/Keyword: Gradient material design

Search Result 107, Processing Time 0.023 seconds

Thermal buckling resistance of simply supported FGM plates with parabolic-concave thickness variation

  • Benlahcen, Fouad;Belakhdar, Khalil;Sellami, Mohammed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.591-602
    • /
    • 2018
  • This research presents an investigation on the thermal buckling resistance of FGM plates having parabolic-concave thickness variation exposed to uniform and gradient temperature change. An analytical formulation is derived and the governing differential equation of thermal stability is solved numerically using finite difference method. A specific function of thickness variation is introduced where it controls the parabolic variation intensity of the thickness without changing the original material volume. The results indicated that the loss ratio in buckling resistance is the same for any gradient temperature profile. Influencing geometrical and material parameters on the loss ratio in the thermal resistance buckling are investigated which may help in design guidelines of such complex structures.

Thermomechanical Properties of Thermal-Stress Relief Type of Functionally Gradient Materials

  • Watanabe, Ryuzo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1993.11a
    • /
    • pp.2-2
    • /
    • 1993
  • The present status of the thennomechanica1 evaluation of functionally gradient materials(FGMs) for space plane application was reviewed, in which research activities and the cooperation of the national project team organized to study FGM science were demonstrated. The project team was divided into three working groups; de singing, processing and evaluation, each of which had their own tasks in the project cooperation. The testings details of the various thennomechanical tests for the FGM samples fabricated by the processing groups were described, along with their corresponding heating conditions of the real environments in the space plane application. For small-sized samples, laser beam heating test and burner heating test were well applied to study the heat shielding and heat resisting properties. Arc-heated wind tunnel test and high temperature!high velocity gas flow test were used for large-sized panel assemblies having cooling structures. The criteria for the evaluation of the heat shielding and heat resisting properties of the FGMs, as well as a crack activation mechanism in their differential temperature heating, were proposed on the basis of the observation in the burner heating test.

  • PDF

The Optimum Design of Casting Process through Prediction and control of Thermal Deformation (주조 공정 시 열변형 예측과 제어를 통한 금형의 최적 설계에 관한 연구)

  • Choi, Bong-Hak;Kwahk, Si-Young;Kim, Jeong-Tae;Choi, Jeong-Kil;Lee, Dong-Il
    • Journal of Korea Foundry Society
    • /
    • v.25 no.5
    • /
    • pp.209-215
    • /
    • 2005
  • The design of the Metal mold casting should consider several variables such as the material properties and shape of the mold. In particular, the thermal stress generated by the thermal expansion and contraction depending on the thermal gradient of the mold causes partial plastic deformation on the mold, which causes damage or fracture of the cast. Consequently, the thermal deformation along with thermal stress leads to thermal deformation of the cast itself. In this study, the temperature analysis of the cast and mold is simulated by FDM to control the thermal deformation and stress as a result of the thermal gradient of mold. Using the results from FDM simulation, the thermal deformation and stress are analyzed by FEM and, the optimal mold design with minimum thermal deformation of the cast is suggested.

Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates

  • Basha, Muhammad;Daikh, Ahmed Amine;Melaibari, Ammar;Wagih, Ahmed;Othman, Ramzi;Almitani, Khalid H;Hamed, Mostafa A.;Abdelrahman, Alaa;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.639-660
    • /
    • 2022
  • The bending and buckling behaviours of FG-GRNC laminated sandwich plates are investigated by using novel five-variables quasi 3D higher order shear deformation plate theory by considering the modified continuum nonlocal strain gradient theory. To calculate the effective Young's modulus of the GRNC sandwich plate along the thickness direction, and Poisson's ratio and mass density, the modified Halpin-Tsai model and the rule of the mixture are employed. Based on a new field of displacement, governing equilibrium equations of the GRNC sandwich plate are solved using a developed approach of Galerkin method. A detailed parametric analysis is carried out to highlight the influences of length scale and material scale parameters, GPLs distribution pattern, the weight fraction of GPLs, geometry and size of GPLs, the geometry of the sandwich plate and the total number of layers on the stresses, deformation and critical buckling loads. Some details are studied exclusively for the first time, such as stresses and the nonlocality effect.

Dynamic characteristics of viscoelastic nanobeams including cutouts

  • Rabab A. Shanab;Norhan A. Mohamed;Mohamed A. Eltaher;Alaa A. Abdelrahman
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.45-65
    • /
    • 2023
  • This paper aimed to investigate the nonclassical size dependent free vibration behavior of regularly squared cutout viscoelastic nanobeams. The nonlocal strain gradient elasticity theory is modified and adopted to incorporate the viscoelasticity effect. The Kelvin Voigt viscoelastic model is adopted to model the linear viscoelastic constitutive response. To explore the influence of shear deformation effect due to cutout, both Euler Bernoulli and Timoshenko beams theories are considered. The Hamilton principle is utilized to derive the dynamic equations of motion incorporating viscoelasticity and size dependent effects. Closed form solutions for the resonant frequencies for both perforated Euler Bernoulli nanobeams (PEBNB) and perforated Timoshenko nanobeams (PTNB) are derived considering different boundary conditions. The developed procedure is verified by comparing the obtained results with the available results in the literature. Parametric studies are conducted to show the influence of the material damping, the perforation, the material and the geometrical parameters as well as the boundary and loading conditions on the dynamic behavior of viscoelastic perforated nanobeams. The proposed procedure and the obtained results are supportive in the analysis and design of perforated viscoelastic NEMS structures.

Ceramic Actuators with PLZT Functionally Gradient Material (PLZT 경사 기능 재료를 이용한 세라믹 엑튜에이터)

  • Choi, Seung-Chul;Kim, Han-Soo;Sohn, Jeong-Ho;Kim, Hyun-Jai;Jeong, Hyeong-Jin
    • Korean Journal of Materials Research
    • /
    • v.1 no.2
    • /
    • pp.105-112
    • /
    • 1991
  • In PLZT system, a new type of material for piezoelectric actuator was developed and its properties were investigated. This material consists of three layers : a piezoelectric ceramic layer, an interlayer which composition changes gradually, and another piezoelectric layer. This kind of materials is called functionally Gradient Materials(FGM). The composition of these layers were selected from the $(Pb,\;La)(Zr,\;TiO_3$ system through the concept of materials design. Sintered FGM at $1300^{\circ}C$, 2hr has an interlayer of about $20\mu\textrm{m}$ with no distorted damage. Dielectric and piezoelectic properties of FGM show intervalues of each side composition. The strain-voltage characteristics in FGM system was improved comparison with any single composition. Especially, the FGMs were fabricated which has high piezoelectric-low dielectric composition and low piezoelectric-high dielectric composition. The properties of both FGMs were significantly improved.

  • PDF

Cost optimization of reinforced high strength concrete T-sections in flexure

  • Tiliouine, B.;Fedghouche, F.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.65-80
    • /
    • 2014
  • This paper reports on the development of a minimum cost design model and its application for obtaining economic designs for reinforced High Strength Concrete (HSC) T-sections in bending under ultimate limit state conditions. Cost objective functions, behavior constraint including material nonlinearities of steel and HSC, conditions on strain compatibility in steel and concrete and geometric design variable constraints are derived and implemented within the Conjugate Gradient optimization algorithm. Particular attention is paid to problem formulation, solution behavior and economic considerations. A typical example problem is considered to illustrate the applicability of the minimum cost design model and solution methodology. Results are confronted to design solutions derived from conventional design office methods to evaluate the performance of the cost model and its sensitivity to a wide range of unit cost ratios of construction materials and various classes of HSC described in Eurocode2. It is shown, among others that optimal solutions achieved using the present approach can lead to substantial savings in the amount of construction materials to be used. In addition, the proposed approach is practically simple, reliable and computationally effective compared to standard design procedures used in current engineering practice.

The Optimum Design for PSC Box Girder Bridges Considering Friction Coefficient and Material Strength (마찰계수와 재료강도를 고려한 PSC 박스 거더교의 최적설계)

  • Kim, Ki Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.181-189
    • /
    • 2006
  • This study analyzes the effects of the curvature friction coefficient, the wobble friction coefficient, and the increased strength of concrete, reinforced tendon on optimum de signs by using the optimum-design program, to minimize the cost of a PSC box girder bridge using the full staging method. The objective of this study is to find a proper tendon for the friction coefficient, and thereafter, to indicate the direction of the study development about tendons and to indicate the direction of a study on the increased strength of used materials. This program used the SUMT procedure and Kavlie's extended-penalty function to allow infeasible design points in the process. Powel's direct method was used in searching design points, and the gradient approximate method was used to reduce the design hours.

On bending of cutout nanobeams based on nonlocal strain gradient elasticity theory

  • Alazwari, Mashhour A.;Eltaher, Mohamed A.;Abdelrahman, Alaa A.
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.707-723
    • /
    • 2022
  • This article aims to investigate the size dependent bending behavior of perforated nanobeams incorporating the nonlocal and the microstructure effects based on the nonlocal strain gradient elasticity theory (NSGET). Shear deformation effect due to cutout process is studied by using Timoshenko beams theory. Closed formulas for the equivalent geometrical characteristics of regularly squared cutout shape are derived. The governing equations of motion considering the nonlocal and microstructure effects are derived in comprehensive procedure and nonclassical boundary conditions are presented. Analytical solution for the governing equations of motion is derived. The derived non-classical analytical solutions are verified by comparing the obtained results with the available results in the literature and good agreement is observed. Numerical results are obtained and discussed. Parametric studies are conducted to explore effects of perforation characteristics, the nonclassical material parameters, beam slenderness ratio as well as the boundary and loading conditions on the non-classical transverse bending behavior of cutout nanobeams. Results obtained are supportive for the design, analysis and manufacturing of such nanosized structural system.

Shape Optimal Design of Elastic Concrete Dam (탄성콘크리트 댐의 모양최적설계)

  • Yoo, Yung Myun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.9-14
    • /
    • 1985
  • In this research mass of a plane strain two dimensional elastic concrete dam under gravitational and hydrostatic loads is minimized, through shape optimization of the dam cross section. Cross sectional area of the dam is taken as cost function of the optimization problem while constraints on the principal stress distribution and dam thickness are imposed. Shape of the boundary of the model is chosen as design variable. Variational formulation of the optimization problem, the material derivative idea of continuum mechanics, and an adjoint variable method are employed for the shape design sensitivity calculation. Then the gradient projection algorithm is utilized to obtain an optimum design iteratively. Research results fully demonstrate that the theory and procedure adopted are quite efficient and can be applicable to a wide class of practical elastic structural design problems.

  • PDF