보행자 검출은 수년간 광범위하게 연구된 문제이며, 자율주행 자동차와 운전자 보조시스템에서 매우 중요한 역할을 차지하고 있다. 특히, 계층적 분류기[1]와 Histogram of Gradient[2]특징벡터 등 영상기반의 보행자 검출기법과 ConvNet같이 deep model을 이용하여 검출하는 기법들이 연구되었고 검출성능은 꾸준히 상승하였다. 하지만 보행자 검출은 작은 오차에도 생명과 연관된 문제를 야기할 수 있기 때문에, 자율주행 시스템의 보행자검출 오차율은 더욱 낮출 필요가 있다. 따라서 본 연구에서는 Faster R-CNN 응용 기법에 새로 개발한 데이터 학습 모델을 적용하여 보행자 검출 오류를 줄이는 기법을 제안한다. 그리고 기존에 제안된 모델들과 비교를 통해, 보행자 검출에 있어 제안된 방법의 우수성을 보이고자 한다.
In this paper, we propose the fusion design methodology of both pedestrian detection and object tracking system realized with the aid of HOG-PCA based RBFNN pattern classifier. The proposed system includes detection and tracking parts. In the detection part, HOG features are extracted from input images for pedestrian detection. Dimension reduction is also dealt with in order to improve detection performance as well as processing speed by using PCA which is known as a typical dimension reduction method. The reduced features can be used as the input of the FCM-based RBFNNs pattern classifier to carry out the pedestrian detection. FCM-based RBFNNs pattern classifier consists of condition, conclusion, and inference parts. FCM clustering algorithm is used as the activation function of hidden layer. In the conclusion part of network, polynomial functions such as constant, linear, quadratic and modified quadratic are regarded as connection weights and their coefficients of polynomial function are estimated by LSE-based learning. In the tracking part, object tracking algorithms such as mean shift(MS) and cam shift(CS) leads to trace one of the pedestrian candidates nominated in the detection part. Finally, INRIA person database is used in order to evaluate the performance of the pedestrian detection of the proposed system while MIT pedestrian video as well as indoor and outdoor videos obtained from IC&CI laboratory in Suwon University are exploited to evaluate the performance of tracking.
본 논문에서는 의료영상의 특성을 반영하여 픽셀 그래디언트의 방향 값을 특징으로 하는 OCS-LBP (Oriented Center Symmetric Local Binary Patterns) 특징을 개발하고 BoF(Bag-of-Feature)와 Random Forest 분류기를 이용한 영상 검색 방법을 제안한다. 학습영상에서 추출된 특징 값은 code book 으로 군집화 되고, 각 영상들은 code book을 통해 의미 있는 새로운 차원인 BoF특징으로 변환된다. 이렇게 추출된 BoF특징은 Random Forest 분류기에 적용되고 학습된 분류기에 의해 유사한 특성을 갖는 N개의 클래스별로 분류되게 된다. 질의 영상이 입력되면 동일한 OCS-LBP특징이 추출되고 code book을 통해 BoF특징이 추출된다. 전통적인 내용기반 영상검색과는 다르게, 본 논문에서는 질의 영상에서 추출된 BoF특징이 학습된 Random Forest에 적용되어 가장 유사한 K-근접 이웃 (K-nearest neighbor) 클래스들을 선택하고 선택된 클래스들에 포함된 영상들에 대해서만 질의 영상과의 BoF 유사도 측정을 통해 최종 유사한 영상을 검색하게 된다. 실험결과에서 본 논문에서 제안하는 방법은 빠르고 우수한 검색 성능을 보여 주었다.
Purpose: This study assessed and compared the dosimetric performance of HyperArc and RapidArc in stereotactic radiosurgery (SRS) for a single brain metastasis. Methods: Twenty patients with intracranial brain metastases, each presenting a distinct target volume, were retrospectively selected. Subsequently, volumetric modulated arc therapy (VMAT) plans were designed using RapidArc (VMATRA) and HyperArc (VMATHA) for each patient. For planning comparisons, dose-volumetric histogram (DVH) parameters for planning target volumes (PTVs) and normal brain regions were computed across all VMAT plans. Subsequently, their total monitor units (MUs), total beam-on times, and modulation complexity scores for the VMAT (MCSv) were compared. A statistical test was used to evaluate the dosimetric disparities in the DVH parameters, total MUs, total beam-on times, and MCSv between the VMATHA and VMATRA plans. Results: For the PTVs, VMATHA presented a higher homogeneity index (HI) than VMATRA. Moreover, VMATHA presented significantly smaller gradient index (GI) values (P<0.001) than VMATRA. Thus, VMATHA demonstrated better performance in the DVH parameters for the PTV than VMATRA. For normal brain tissues, VMATHA presented lower volume receiving 50% of the prescription dose and V2Gy to the normal brain tissues than VMATRA (P<0.0001). While the total MUs required for VMATHA was significantly higher than those for VMATRA, the total beam-on time for VMATHA was superior to that for VMATRA. Conclusions: Thus, VMATHA exhibited superior performance in achieving rapid dose fall-offs (as indicated by the GI) and a higher HI at the PTV compared to VMATRA in brain SRS. This advancement positions HyperArc as a significant development in the field of radiation therapy, offering optimized treatment outcomes for brain SRS.
일반적으로 2D 스테레오 영상으로부터 3차원 모델링을 위해서는 정확한 변위 측정이 필수이다. 기존의 스테레오 영상에서 변위 측정 방식은 전체 영상에 대하여 정합 연산을 수행함으로써 많은 연산 시간과 함께 높은 오 정합 확률의 문제가 있다. 본 논문에서는 스테레오 영상에서의 변위 벡터가 전체 탐색 범위 안에 골고루 분포되어 있지 않고 배경과 물체의 변위에 해당하는 값만을 갖는다는 특성을 이용하여 스테레오 영상을 웨이블릿 변환을 하고 1/4 크기로 줄어든 저주파 영역으로부터 영역 기반 방법을 이용하여 대략적인 변위 영역을 구한다. 대략적인 변위 백터로부터 변위 히스토그램을 생성하고, 이를 이용하여 전경과 배경을 분할 한 뒤, 다시 전경 영상만을 원 영상으로 복원하여 화소의 밝기값이 아닌 2차 미분값을 이용한 화소기반 방법을 통해 조밀한 변위를 구하는 2단계 하이브리드 방법을 제안한다. 또한, 분할된 전경 영역으로부터, 특징점들을 뽑아내고 변위 벡터와 카메라 파라미터를 이용하여 특징점들의 깊이 정보를 추정해 내는 3차원 모델링 과정을 제시한다. 본 논문에서 제안한 방법을 적용할 경우, 기존의 영역 기반 방법의 문제점인 계산 시간 문제를 상당 부분 단축시킬 수 있고, LOG 필터를 통한 2차 미분값을 이용한 화소기반 방법을 추가함으로써, 정밀한 변위를 구할 수 있다. 또한 교차 일치성 검사를 통해 잘못된 변위를 제거하고, 폐색 영역들을 검사할 수 있다. 아울러 3차원 모델링 과정에서, 기존의 Delaunay 삼각측량법의 문제점인 오정합 문제를 전경/배경 분할 알고리즘을 제안함으로써 효과적으로 해결 할 수 있다.
방사선 수술에 있어서 선량 형태를 변형시키기 위한 조사변수들의 선택은 중요한 문제이다. 선형가속기를 이용한 뇌정위적 방사선 수술은 통상 원형 조사면과 다중 arc를 이용하여 구형 형태의 선량을 얻는 방법을 이용하고 있다. 그러나, 병소가 임의의 형태인 경우 구형의 선량으로서는 병소 이외에 정상조직도 많은 선량이 가해지게 된다. 현재 병소형태의 선량을 얻기 위한 방법으로 multiple isocenters를 이용하거나, 각 arc에 달리 weights를 주는 방법을 사용하고 있다. 본 논문에서는 병소의 beam's eye view를 이용하여 조사 위치에서 조사면을 shaping하는 새로운 방법에 대하여 논의하고자 한다. 이러한 conformal조사 방법은 병소와 정상조직의 가시적인 3차원 선량분포와 dose volume histogram의 분석 방법을 통하여 검증되었다. conformal 방법을 이용한 경우 multiple isocenter를 이용한 경우보다 적은 arc 수를 가지고도 상응하는 dose gradient와 더 나은 선량의 균질성을 얻을 수 있었다.
PVA 섬유 보강 시멘트 복합체는 매우 복잡한 미세구조를 가지고 있으며, 재료의 거동을 정확히 평가하기 위해서는 미세구조 특성을 반영하여 실제 실험과 시너지효과를 내며 효율적인 재료 설계를 가능하게 하는 해석 모델의 개발이 중요하다. PVA 섬유 보강 시멘트 복합체의 역학적 성능은 PVA 섬유의 방향성에 큰 영향을 받는다. 그러나 마이크로-CT 이미지로부터 얻은 PVA 섬유의 회색조 값을 인접한 상과 구분하기 어려워, 섬유 분리 과정에 많은 시간이 소요된다. 본 연구에서는 섬유의 3차원 분포를 얻기 위하여 0.65㎛3의 복셀 크기를 가지는 마이크로-CT 이미지 촬영을 수행하였다. 학습에 사용될 학습 데이터를 생성하기 위해 히스토그램, 형상, 그리고 구배 기반 상 분리 방법을 적용하였다. 본 연구에서 제안된 U-net 모델을 활용하여 PVA 섬유 보강 시멘트 복합체의 마이크로- CT 이미지로부터 섬유를 분리하는 학습을 수행하였다. 훈련의 정확도를 높이기 위해 데이터 증강을 적용하였으며, 총 1024개의 이미지를 훈련 데이터로 사용하였다. 모델의 성능은 정확도, 정밀도, 재현율, F1 스코어를 평가하였으며, 학습된 모델의 섬유 분리 성능이 매우 높고 효율적이며, 다른 시편에도 적용될 수 있음을 확인하였다.
본 논문에서는 간암 환자를 대상으로 3차원입체조형치료와 세기조절방사선치료와 3종류의 래피드아크 치료를 위한 치료계획을 수행하여 각각의 선량분포와 선량 체적 히스토그램(Dose Volume Histogram, DVH)의 특성을 비교, 평가하고 이를 통해 래피드아크 치료 환자에 대한 적절한 갠트리 회전수의 범위를 제시하고자 하였다. 치료계획은 작은 종양의 용적을 가지며 내부 장기 및 종양의 움직임이 비교적 작은 간암환자를 대상으로 3차원입체조형치료와 세기조절방사선치료와 더블아크(double arcs)와 제한적인 트리플아크(limited triple arcs)와 멀티플아크(multiple arcs)치료에 대해 Eclipse 8.6 버전에서 시행하였다. 또한 치료계획 시 임상표적용적(Clinical Target Volume, CTV)과 치료표적용적(Planning Target Volume, PTV)에 동일한 최적화 조건을 적용하였고, 각각의 정상조직에는 개별적인 선량 제한치 적용대신 종양 주변 정상조직에서의 선량 감소율을 일괄적으로 적용하였다. 임상표적용적과 치료표적용적의 전체 몸에 적용한 치료계획 선량 제한치에 대한 실제 계산결과의 만족도는 래피드아크가 세기조절방사선치료보다 높았으며 래피드아크에서 더블아크와 제한적인 트리플아크와 멀티플아크는 만족도가 거의 동일하였다. 또한 각 치료계획에서 치료표적용적에 계획한 선량 제한치에 따라 SALT group이 제안한 Conformity Index (CI)가 0.98인 선량 분포범위에 처방선량을 결정하였다. 이때 RTOG에서 제안한 CI, Homogeneity Index (HI), Quality of Coverage (QOC)와 Lomax and Scheib에서 제안한 Healthy tissue conformity index (HTCI) 등을 평가하였다. 항목별로 차이는 있지만 총체적인 평가 결과는 멀티플아크가 전체적으로 좋았으며 모니터 단위 값의 비교에서도 멀티플아크가 가장 작았다. 본 연구를 통하여 래피드아크 치료는 기존에 시행하고 있는 3차원입체조형치료 또는 세기조절방사선치료 기법보다 더욱 최적의 선량 분포를 구현한다는 것을 알 수 있었다. 또한 래피드아크 치료계획에서 멀티플아크 치료계획은 더블 또는 제한된 트리플아크 치료계획보다 모니터 단위 값이 작고, 선량의 균질성 및 종양내의 최소선량은 비슷하거나 좋아지는 동시에 주변 정상조직에는 선량이 감소되는 것을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.