• Title/Summary/Keyword: Gradient elution

Search Result 251, Processing Time 0.029 seconds

Analysis of Distribution of Propylene oxide in Nonionic Surfactant and Fatty alcohol by Reversed Phase High Performance Liquid Chromatography (역상 액체 크로마토그래피에 의한 비이온 계면활성제의 Propylene oxide 분포 및 Fatty alcohol의 분석)

  • Lee, Yong-Hwa;Bak, Hong-Soon;Choi, Kyu-Yeol;Lee, Jae-Duk;Ahn, Ho-Jeong
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.315-319
    • /
    • 1997
  • In this study, the optimum analytical conditions for determination of distribution of propylene oxide in a nonionic surfactant and separation of fatty alcohols were investigated by Reversed Phase High Performance Liquid Chromatography. To analyse the distribution of propylene oxide (PO) and carbon chain length of a fatty alcohol, we derivatized samples for the purpose of using a UV detector. Also, we studied the influences of columns and mobile phase composition to obtain the optimum separation conditions. In our experiment, Waters Symmetry $C_8(3.9{\times}150mm)$ column was used. And the optimum condition were obtained by gradient elution with methanol and water as the mobile phase. In the plot of log k' vs composition of water in the binary phase, the linerality was very good. We ploted the calibration curve to conform the quality of fatty alcohol, a good linerality was obtained.

  • PDF

Thermal Degradation Kinetics of Tocopherols during Heating without Oxygen (무산소 가열시 토코페롤의 열분해 키네틱스)

  • Chung, Hae-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.20 no.2
    • /
    • pp.120-124
    • /
    • 2007
  • The thermal degradation kinetics of alpha-, gamma- and delta-tocopherols was studied during heating at 100, 150 200 and 250$^{\circ}C$ for 5, 15, 30 and 60 min in the absence of oxygen. The tocopherols were separated by HPLC using a reversed phase ${\mu}$-Bondapak C$_{18}$-column with two kinds of elution solvent system in a gradient mode. The kinetics for degradation of ${\alpha}$-, ${\gamma}$- and ${\delta}$-tocopherols was analyzed as a function of temperatures and times. The degradation of tocopherols was described by the first-order kinetics in the absence of oxygen. The rate of tocopherols degradation was dependent on heating temperatures. The degradation rate constants for ${\alpha}$-, ${\gamma}$ and ${\delta}$-tocopherols showed an increasing trend as the heating temperature increased. The magnitude order of the experimental activation energy was ${\delta}$->${\gamma}$->${\alpha}$-tocopherol.

Quantitative Analysis of the Marker Constituents in Yongdamsagan-Tang using Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (LC-ESI-MS/MS를 이용한 용담사간탕의 주요 성분 분석)

  • Seo, Chang-Seob;Ha, Hyekyung
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.4
    • /
    • pp.320-328
    • /
    • 2017
  • Yongdamsagan-tang has been used to treat the urinary disorders, acute- and chronic-urethritis, and cystitis in Korea. In this study, an ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS/MS) method was established for simultaneous analysis of the 20 bioactive marker compounds, geniposidic acid, chlorogenic acid, geniposide, liquiritin apioside, acteoside, calceolarioside B, liquiritin, nodakenin, baicalin, liquiritigenin, wogonoside, baicalein, glycyrrhizin, wogonin, glycyrrhizin, wogonin, saikosaponin A, decursin, decursinol angelate, alisol B, alisol B acetate, and pachymic acid in traditional herbal formula, Yongdamsagan-tang. Chromatographic separations of all marker compounds were conducted using a Waters Acquity UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}m$) at $45^{\circ}C$ using a mobile phase of 0.1% (v/v) formic acid in water and acetonitrile with gradient elution. The MS analysis was performed using a Waters ACQUITY TQD LC-MS/MS coupled with an electrospray ionization source in the positive and negative modes. The flow rate was 0.3 mL/min and injection volume was $2.0{\mu}L$. The correlation coefficient of 20 marker compounds in the test ranges was 0.9943-1.0000. The limits of detection and quantification values of the all marker components were 0.11-6.66 and 0.34-19.99 ng/mL, respectively. As a result of the analysis using the optimized LC-ESI-MS/MS method, three compounds, geniposidic acid (from Plantaginis Semen), alisol B (from Alismatis Rhizoma), and pachymic acid (from Poria Sclerotium), were not detected in this sample. While the amounts of the 17 compounds except for the geniposidic acid, alisol B, and pachymic acid were $0.04-548.13{\mu}g/g$ in Yongdamsagan-tang sample. Among these compounds, baicalin, bioactive marker compound of Scutellariae Radix, was detected at the highest amount as a $548.13{\mu}g/g$.

HPLC-tandem Mass Spectrometric Analysis of the Marker Compounds in Forsythiae Fructus and Multivariate Analysis

  • Cho, Hwang-Eui;Ahn, Su-Youn;Son, In-Seop;Hwang, Gyung-Hwa;Kim, Sun-Chun;Woo, Mi-Hee;Lee, Seung-Ho;Son, Jong-Keun;Hong, Jin-Tae;Moon, Dong-Cheul
    • Natural Product Sciences
    • /
    • v.17 no.2
    • /
    • pp.147-159
    • /
    • 2011
  • A high-performance liquid chromatography-electrospray ionization-tandem mass spectrometric method was developed to determine simultaneously eight marker constituents of Forsythiae fructus, and subsequently applied it to classify its two botanical origins. The marker compounds of Forsythia suspensa were phillyrin, pinoresinol, phillygenin, lariciresinol and forsythiaside; those of F.viridissima were arctiin, arctigenin and matairesinol. Separation of the eight analytes was achieved on a phenyl-hexyl column (150${\times}$2.0 mm i.d., 3 ${\mu}M$) using gradient elution with the mobile phase: (A) 10% acetonitrile in 0.5% acetic acid, (B) 40% aqueous acetonitrile. A few fragment ions specific to the types of lignans, among the product ions generated by collisonally induced dissociation (CID) of molecular ion clusters, such as [M-H]$^-$ or [M+OAc]$^-$ were used not only for fingerprinting analysis but for the quantification of each epimer by using multiple-reaction monitoring mode. It was shown good linearity ($r^2{\geq}$ 0.9998) over the wide range of all analytes; intra- and inter-day precisions (RSD, %) were within 9.14% and the accuracy ranged from 84.3 to 115.1%. The analytical results of 40 drug samples, combined with multivariate statistical analyses - principal component analysis (PCA) and hierarchical cluster analysis (HCA) - clearly demonstrated the classification of the test samples according to their botanical origins. This method would provide a practical strategy for assessing the authenticity or quality of the herbal drug.

Quantification of the 25 Components in Onkyung-Tang by Ultra Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (UPLC-ESI-MS/MS를 이용한 온경탕 중 25종 성분의 함량분석)

  • Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.92-101
    • /
    • 2016
  • In this study, an ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS/MS) method was established for simultaneous determination of the 25 marker components, including chlorogenic acid, gallic acid, oxypaeoniflorin, homogentisic acid, methyl gallate, caffeic acid, 3,4-dihydroxybenzaldehyde, paeoniflorin, albiflorin, liquiritin, nodakenin, ferulic acid, ginsenoside Rg1, liquiritigenin, coumarin, cinnamic acid, benzoylpaeoniflorin, ginsenoside Rb1, cinnamaldehyde, paeonol, glycyrrhizin, 6-gingerol, evodiamine, rutecarpine, and spicatoside A in traditional Korean formula, Onkyung-tang. All analytes were separated on a Waters Acquity UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}m$) at $45^{\circ}C$ using a mobile phase of 0.1% (v/v) formic acid in water and acetonitrile with gradient elution. The MS analysis was carried out using a Waters ACQUITY TQD LC-MS/MS coupled with an electrospray ionization (ESI) source in the positive and negative modes. The flow rate and injection volume were 0.3 mL/min and $2.0{\mu}L$, respectively. The correlation coefficient of all analytes in the test ranges was greater than 0.98. The limits of detection and quantification values of the 25 marker compounds were in the ranges 0.03-19.43 and 0.09-58.29 ng/mL, respectively. As a result, methyl gallate, 3,4-dihydroxybenzaldehyde, evodiamine, and rutecarpine were not detected in this sample and the concentrations of the 21 compounds except for the above 4 compounds were $33.09-3,496.32{\mu}g/g$ in Onkyung-tang decoction. Among these compounds, paeonol was detected at the highest amount as a $3,496.32{\mu}g/g$.

Simultaneous Determination of Isoegomaketone and Perillaketone in Perilla frutescens (L.) Britton Leaves by HPLC-DAD (HPLC-DAD를 이용한 차조기 잎의 Isoegomaketone 및 Perillaketone의 동시분석법 확립)

  • Nam, Bo Mi;Lee, Seung Young;Kim, Jin-Baek;Kang, Si-Yong;Jin, Chang Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.79-83
    • /
    • 2016
  • This study developed an HPLC analysis method for the determination of isoegomaketone (IK) and perillaketone (PK) in Perilla frutescens (L.) Britton leaves. P. frutescens ethanol extract was optimized through an HPLC analysis using a C18 column ($250{\times}4.6mml$, D, $S-5{\mu}m$, 12 nm) with gradient elution of water and acetonitrile as the mobile phase at a flow rate of 1 mL/min and a UV detection wavelength of 254 nm. The results of this method showed linearity in the calibration curve at a coefficient of correlation ($R^2$) of IK 0.9995, PK 0.9998. The limits of detection (LOD) for IK and PK were $0.234{\mu}g/mL$ and $0.952{\mu}g/mL$. The limits of quantification (LOQ) for IK and PK were $0.017{\mu}g/mL$ and $0.043{\mu}g/mL$. The inter-day precision RSDs of IK and PK in the P. frutescens were 1.25 to 2.69% and 0.36 to 1.10%, respectively, and the intra-day precision RSDs of IK and PK were 0.96 to 2.51% and 0.90 to 1.93%, respectively. The accuracies of IK and PK were 96.31 to 97.92% and 101.26 to 105.14%. In conclusion, this method was applied successfully to the detection of IK and PK in P. frutescens.

Quantitative Determination of the Thirteen Marker Components in Banhasasim-Tang Decoction Using an Ultra-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry (LC-MS/MS를 이용한 반하사심탕 물 추출물 중 13종 성분의 함량분석)

  • Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.62-72
    • /
    • 2016
  • Banhasasim-tang is a well-known traditional Korean herbal formula and has been used clinically for the treatment of gastric disease, including acute and chronic gastritis, diarrhea and gastric ulcers in Korea. In this study, an ultra-performance liquid chromatography-electrospray ionization-mass spectrometer method was developed for the quantitative determination of the 13 marker constituents, homogentisic acid (1), 3,4-dihydroxybenzaldehyde (2), spinosin (3), liquiritin (4), baicalin (5), ginsenoside Rg1 (6), liquiritigenin (7), wogonoside (8), ginsenoside Rb1 (9), baicalein (10), glycyrrhizin (11), wogonin (12), and 6-gingerol (13) in Banhasasim-tang decoction. Separation of the compounds 1-13 was using an UPLC BEH $C_{18}$ ($100{\times}2.1mm$, $1.7{\mu}m$) column and column oven temperature was maintained at $45^{\circ}C$. The mobile phase consisted of 0.1% (v/v) formic acid in water (A) and acetonitrile (B) by gradient elution. The injection volume and flow rate were $2.0{\mu}L$ and 0.3 mL/min, respectively. Calibration curves of the compounds 1-13 were showed with $r^2$ values ${\geq}0.9908$. The limit of detection and limit of quantification values of the compounds 1-13 were 0.04-1.11 ng/mL and 0.13-3.33 ng/mL, respectively. Among the these compounds, the compounds 1-3 were not detected, while the compounds 4-13 were detected in the ranges of $3.20-107,062.98{\mu}g/g$ in Banhasasim-tang sample.

Quantitative Analysis of Luteolin 5-glucoside in Ajuga spectabilis and Their Neuroprotective Effects (자란초에서 분리된 Luteolin 5-glucoside의 함량분석과 신경세포 보호 활성)

  • Woo, Kyeong Wan;Sim, Mi Ok;Kim, A Hyun;Kang, Byoung Man;Jung, Ho Kyung;An, Byeongkwan;Cho, Jung Hee;Cho, Hyun Woo
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.3
    • /
    • pp.211-216
    • /
    • 2016
  • In the course of our continuing search for biologically active components from Korean medicinal plants, we isolated the main compound, luteolin 5-glucoside from aqueous fraction of Ajuga spectabilis. The structure was elucidated by the basis of $^1H$ and $^{13}C$ NMR and TOF ESI-MS data. Quantitative analysis of luteolin 5-glucoside was carried out on a XBridge C18 column ($S-5{\mu}m$, $4.6{\times}250mm$) with gradient elution composed of acetonitrile:water. The results exhibit that the average content of main compound in A. spectabilis were 0.048%. Oxidative stress plays a major role Alzheimer's disease (AD) and other neurodogenerative disease. AD is major health problem and there is currently no clinically accepted treatment to cure or stop its progression. Pretreatment with luteolin 5-glucoside markedly attenuated $H_2O_2$-induced cell viability loss in a dose-dependent manner. Luteolin 5-glucoside also inhibited the formation of intracellular reactive oxygen species in SH-SY5Y. The results suggest that luteolin 5-glucoside from A. spectabilis has protective effects against oxidative stress-induced cytotoxicity, which might be a potential therapeutic compound for treating and/or preventing neurodegenerative disease implicated with oxidative stress.

Simultaneous Determination of the Flavonoids and Limonoids in Citrus junos Seed Shells Using a UPLC-DAD-ESI/MS

  • Jo, Ara;Shin, Ji hun;Song, Hwa young;Lee, Ye Eun;Jeong, Da Eun;Oh, Sung Hwa;Mun, Myung Jae;Lee, Mina
    • Natural Product Sciences
    • /
    • v.26 no.1
    • /
    • pp.64-70
    • /
    • 2020
  • Citrus junos seeds (CS) have been traditionally used for the treatment of cancer and neuralgia. They are also used to manufacture edible oil and cosmetic perfume. A large amount of CS shells without oil (CSS) are discarded after the oil in CS is used as foods or herbal remedy. To efficiently utilize CSS as a by-products, it needs to be studied through chemical analysis. Therefore, we developed an ultra-performance liquid chromatography (UPLC)-diode array detection (DAD) method for simultaneous determination and quantitative analysis of five components (two flavonoids and threes limonoids) in CSS. A Waters Acquity UPLC HSS T3 column C18 (2.1 × 100 mm, 1.8 ㎛) was used for this separation. It was maintained at 40 ℃. The mobile phase used for the analysis was distilled water and acetonitrile with gradient elution. To identify the quantity of the five components, a mass spectrometer (MS) with an electrospray ionization (ESI) source was used. The regression equation showed great linearity, with correlation coefficient ≥ 0.9912. Limits of detection (LOD) and limits of quantification (LOQ) of the five compounds were 0.09 - 0.13 and 0.26 - 0.38 ㎍/mL, respectively. Recoveries of extraction ranged from 97.45% to 101.91%. Relative standard deviation (RSD) values of intra- and inter-day precision were 0.06 - 1.15% and 0.19 - 0.25%, respectively. This UPLC-DAD method can be validated to simultaneously analyze quantities of marker flavonoids and limonoids in CSS.

Study on HPLC conditions for chemotaxonomy of Ganoderma species (영지버섯의 화학적 계통분류를 위한 HPLC분석 방법에 관한 연구)

  • Yoon, Dae-Eun;Park, Young-Jin;Kwon, O-Chul;Nam, Jae-Young;Kim, Hong-Il;Yoo, Young-Bok;Kong, Won-Sik;Lee, Chang-Soo
    • Journal of Mushroom
    • /
    • v.11 no.2
    • /
    • pp.107-110
    • /
    • 2013
  • This study was carried out to optimize the conditions for a chemotaxonomic classification of Ganoderma species. The mycelia of Ganoderma species were extracted with 100% MeOH, and the concentrated extracts were further purified and partitioned with column chromatography (HP20) and n-BuOH, respectively. From the result of high-performance liquid chromatography (HPLC), the constituents of the samples were efficiently separated with a Chemco Pak $C_{18}$ column ($250mm{\times}4.6mm$) by linear gradient elution using water and acetonitrile as mobile phase components at a flow rate of 0.8 ml/min and detector wavelength at 210 nm. However, the samples without purification or partition were not detected the characteristic peaks. This profile could be used to classify and identify the various Ganoderma species.