• Title/Summary/Keyword: Gradient boosting

Search Result 205, Processing Time 0.021 seconds

A study on frost prediction model using machine learning (머신러닝을 사용한 서리 예측 연구)

  • Kim, Hyojeoung;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.543-552
    • /
    • 2022
  • When frost occurs, crops are directly damaged. When crops come into contact with low temperatures, tissues freeze, which hardens and destroys the cell membranes or chloroplasts, or dry cells to death. In July 2020, a sudden sub-zero weather and frost hit the Minas Gerais state of Brazil, the world's largest coffee producer, damaging about 30% of local coffee trees. As a result, coffee prices have risen significantly due to the damage, and farmers with severe damage can produce coffee only after three years for crops to recover, which is expected to cause long-term damage. In this paper, we tried to predict frost using frost generation data and weather observation data provided by the Korea Meteorological Administration to prevent severe frost. A model was constructed by reflecting weather factors such as wind speed, temperature, humidity, precipitation, and cloudiness. Using XGB(eXtreme Gradient Boosting), SVM(Support Vector Machine), Random Forest, and MLP(Multi Layer perceptron) models, various hyper parameters were applied as training data to select the best model for each model. Finally, the results were evaluated as accuracy(acc) and CSI(Critical Success Index) in test data. XGB was the best model compared to other models with 90.4% ac and 64.4% CSI, followed by SVM with 89.7% ac and 61.2% CSI. Random Forest and MLP showed similar performance with about 89% ac and about 60% CSI.

A Study on the Prediction of Disc Cutter Wear Using TBM Data and Machine Learning Algorithm (TBM 데이터와 머신러닝 기법을 이용한 디스크 커터마모 예측에 관한 연구)

  • Tae-Ho, Kang;Soon-Wook, Choi;Chulho, Lee;Soo-Ho, Chang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.502-517
    • /
    • 2022
  • As the use of TBM increases, research has recently increased to to analyze TBM data with machine learning techniques to predict the exchange cycle of disc cutters, and predict the advance rate of TBM. In this study, a regression prediction of disc cutte wear of slurry shield TBM site was made by combining machine learning based on the machine data and the geotechnical data obtained during the excavation. The data were divided into 7:3 for training and testing the prediction of disc cutter wear, and the hyper-parameters are optimized by cross-validated grid-search over a parameter grid. As a result, gradient boosting based on the ensemble model showed good performance with a determination coefficient of 0.852 and a root-mean-square-error of 3.111 and especially excellent results in fit times along with learning performance. Based on the results, it is judged that the suitability of the prediction model using data including mechanical data and geotechnical information is high. In addition, research is needed to increase the diversity of ground conditions and the amount of disc cutter data.

Comparison of Machine Learning-Based Greenhouse VPD Prediction Models (머신러닝 기반의 온실 VPD 예측 모델 비교)

  • Jang Kyeong Min;Lee Myeong Bae;Lim Jong Hyun;Oh Han Byeol;Shin Chang Sun;Park Jang Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.3
    • /
    • pp.125-132
    • /
    • 2023
  • In this study, we compared the performance of machine learning models for predicting Vapor Pressure Deficits (VPD) in greenhouses that affect pore function and photosynthesis as well as plant growth due to nutrient absorption of plants. For VPD prediction, the correlation between the environmental elements in and outside the greenhouse and the temporal elements of the time series data was confirmed, and how the highly correlated elements affect VPD was confirmed. Before analyzing the performance of the prediction model, the amount and interval of analysis time series data (1 day, 3 days, 7 days) and interval (20 minutes, 1 hour) were checked to adjust the amount and interval of data. Finally, four machine learning prediction models (XGB Regressor, LGBM Regressor, Random Forest Regressor, etc.) were applied to compare the prediction performance by model. As a result of the prediction of the model, when data of 1 day at 20 minute intervals were used, the highest prediction performance was 0.008 for MAE and 0.011 for RMSE in LGBM. In addition, it was confirmed that the factor that most influences VPD prediction after 20 minutes was VPD (VPD_y__71) from the past 20 minutes rather than environmental factors. Using the results of this study, it is possible to increase crop productivity through VPD prediction, condensation of greenhouses, and prevention of disease occurrence. In the future, it can be used not only in predicting environmental data of greenhouses, but also in various fields such as production prediction and smart farm control models.

Remote Sensing based Algae Monitoring in Dams using High-resolution Satellite Image and Machine Learning (고해상도 위성영상과 머신러닝을 활용한 녹조 모니터링 기법 연구)

  • Jung, Jiyoung;Jang, Hyeon June;Kim, Sung Hoon;Choi, Young Don;Yi, Hye-Suk;Choi, Sunghwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.42-42
    • /
    • 2022
  • 지금까지도 유역에서의 녹조 모니터링은 현장채수를 통한 점 단위 모니터링에 크게 의존하고 있어 기후, 유속, 수온조건 등에 따라 수체에 광범위하게 발생하는 녹조를 효율적으로 모니터링하고 대응하기에는 어려운 점들이 있어왔다. 또한, 그동안 제한된 관측 데이터로 인해 현장 측정된 실측 데이터 보다는 녹조와 관련이 높은 NDVI, FGAI, SEI 등의 파생적인 지수를 산정하여 원격탐사자료와 매핑하는 방식의 분석연구 등이 선행되었다. 본 연구는 녹조의 모니터링시 정확도와 효율성을 향상을 목표로 하여, 우선은 녹조 측정장비를 활용, 7000개 이상의 녹조 관측 데이터를 확보하였으며, 이를 바탕으로 동기간의 고해상도 위성 자료와 실측자료를 매핑하기 위해 다양한Machine Learning기법을 적용함으로써 그 효과성을 검토하고자 하였다. 연구대상지는 낙동강 내성천 상류에 위치한 영주댐 유역으로서 데이터 수집단계에서는 면단위 현장(in-situ) 관측을 위해 2020년 2~9월까지 4회에 걸쳐 7291개의 녹조를 측정하고, 동일 시간 및 공간의 Sentinel-2자료 중 Band 1~12까지 총 13개(Band 8은 8과 8A로 2개)의 분광특성자료를 추출하였다. 다음으로 Machine Learning 분석기법의 적용을 위해 algae_monitoring Python library를 구축하였다. 개발된 library는 1) Training Set과 Test Set의 구분을 위한 Data 준비단계, 2) Random Forest, Gradient Boosting Regression, XGBoosting 알고리즘 중 선택하여 적용할 수 있는 모델적용단계, 3) 모델적용결과를 확인하는 Performance test단계(R2, MSE, MAE, RMSE, NSE, KGE 등), 4) 모델결과의 Visualization단계, 5) 선정된 모델을 활용 위성자료를 녹조값으로 변환하는 적용단계로 구분하여 영주댐뿐만 아니라 다양한 유역에 범용적으로 적용할 수 있도록 구성하였다. 본 연구의 사례에서는 Sentinel-2위성의 12개 밴드, 기상자료(대기온도, 구름비율) 총 14개자료를 활용하여 Machine Learning기법 중 Random Forest를 적용하였을 경우에, 전반적으로 가장 높은 적합도를 나타내었으며, 적용결과 Test Set을 기준으로 NSE(Nash Sutcliffe Efficiency)가 0.96(Training Set의 경우에는 0.99) 수준의 성능을 나타내어, 광역적인 위성자료와 충분히 확보된 현장실측 자료간의 데이터 학습을 통해서 조류 모니터링 분석의 효율성이 획기적으로 증대될 수 있음을 확인하였다.

  • PDF

A Recidivism Prediction Model Based on XGBoost Considering Asymmetric Error Costs (비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측 모델)

  • Won, Ha-Ram;Shim, Jae-Seung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.127-137
    • /
    • 2019
  • Recidivism prediction has been a subject of constant research by experts since the early 1970s. But it has become more important as committed crimes by recidivist steadily increase. Especially, in the 1990s, after the US and Canada adopted the 'Recidivism Risk Assessment Report' as a decisive criterion during trial and parole screening, research on recidivism prediction became more active. And in the same period, empirical studies on 'Recidivism Factors' were started even at Korea. Even though most recidivism prediction studies have so far focused on factors of recidivism or the accuracy of recidivism prediction, it is important to minimize the prediction misclassification cost, because recidivism prediction has an asymmetric error cost structure. In general, the cost of misrecognizing people who do not cause recidivism to cause recidivism is lower than the cost of incorrectly classifying people who would cause recidivism. Because the former increases only the additional monitoring costs, while the latter increases the amount of social, and economic costs. Therefore, in this paper, we propose an XGBoost(eXtream Gradient Boosting; XGB) based recidivism prediction model considering asymmetric error cost. In the first step of the model, XGB, being recognized as high performance ensemble method in the field of data mining, was applied. And the results of XGB were compared with various prediction models such as LOGIT(logistic regression analysis), DT(decision trees), ANN(artificial neural networks), and SVM(support vector machines). In the next step, the threshold is optimized to minimize the total misclassification cost, which is the weighted average of FNE(False Negative Error) and FPE(False Positive Error). To verify the usefulness of the model, the model was applied to a real recidivism prediction dataset. As a result, it was confirmed that the XGB model not only showed better prediction accuracy than other prediction models but also reduced the cost of misclassification most effectively.