• Title/Summary/Keyword: Gradient Vector Flow Intensity

Search Result 5, Processing Time 0.016 seconds

Medical Image Registration by Combining Gradient Vector Flow and Conditional Entropy Measure (기울기 벡터장과 조건부 엔트로피 결합에 의한 의료영상 정합)

  • Lee, Myung-Eun;Kim, Soo-Hyung;Kim, Sun-Worl;Lim, Jun-Sik
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.303-308
    • /
    • 2010
  • In this paper, we propose a medical image registration technique combining the gradient vector flow and modified conditional entropy. The registration is conducted by the use of a measure based on the entropy of conditional probabilities. To achieve the registration, we first define a modified conditional entropy (MCE) computed from the joint histograms for the area intensities of two given images. In order to combine the spatial information into a traditional registration measure, we use the gradient vector flow field. Then the MCE is computed from the gradient vector flow intensity (GVFI) combining the gradient information and their intensity values of original images. To evaluate the performance of the proposed registration method, we conduct experiments with our method as well as existing method based on the mutual information (MI) criteria. We evaluate the precision of MI- and MCE-based measurements by comparing the registration obtained from MR images and transformed CT images. The experimental results show that the proposed method is faster and more accurate than other optimization methods.

3D Modeling of Cerebral Hemorrhage using Gradient Vector Flow (기울기 벡터 플로우를 이용한 뇌출혈의 3차원 모델링)

  • Seok-Yoon Choi
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.231-237
    • /
    • 2024
  • Brain injury causes persistent disability in survivors, and epidural hematoma(EDH) and subdural hematoma (SDH) resulting from cerebral hemorrhage can be considered one of the major clinical diseases. In this study, we attempted to automatically segment and hematomas due to cerebral hemorrhage in three dimensions based on computed tomography(CT) images. An improved GVF(gradient vector flow) algorithm was implemented for automatic segmentation of hematoma. After calculating and repeating the gradient vector from the image, automatic segmentation was performed and a 3D model was created using the segmentation coordinates. As a result of the experiment, accurate segmentation of the boundaries of the hematoma was successful. The results were found to be good even in border areas and thin hematoma areas, and the intensity, direction of spread, and area of the hematoma could be known in various directions through the 3D model. It is believed that the planar information and 3D model of the cerebral hemorrhage area developed in this study can be used as auxiliary diagnostic data for medical staff.

Image Segmentation Using Level Set Method with New Speed Function (새로운 속도함수를 갖는 레벨 셋 방법을 이용한 의료영상분할)

  • Kim, Sun-Worl;Cho, Wan-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.335-345
    • /
    • 2011
  • In this paper, we propose a new hybrid speed function for image segmentation using level set. A new proposed speed function uses the region and boundary information of image object for the exact result of segmentation. The region information is defined by the probability information of pixel intensity in a ROI(region-of-interest), and the boundary information is defined by the gradient vector flow obtained from the gradient of image. We show the results of experiment for an various artificial image and real medical image to verify the accuracy of segmentation using proposed method.

Performance Comparison Between New Level Set Method and Previous Methods for Volume Images Segmentation (볼륨영상 분할을 위한 새로운 레벨 셋 방법과 기존 방법의 성능비교)

  • Lee, Myung-Eun;Cho, Wan-Hyun;Kim, Sun-Worl;Chen, Yan-Juan;Kim, Soo-Hyung
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.131-138
    • /
    • 2011
  • In this paper, we compare our proposed method with previous methods for the volumetric image segmentation using level set. In order to obtain an exact segmentation, the region and boundary information of image object are used in our proposed speed function. The boundary information is defined by the gradient vector flow obtained from the gradient images and the region information is defined by Gaussian distribution information of pixel intensity in a region-of-interest for image segmentation. Also the regular term is used to remove the noise around surface. We show various experimental results of real medical volume images to verify the superiority of proposed method.

Automatic Bone Segmentation from CT Images Using Chan-Vese Multiphase Active Contour

  • Truc, P.T.H.;Kim, T.S.;Kim, Y.H.;Ahn, Y.B.;Lee, Y.K.;Lee, S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.713-720
    • /
    • 2007
  • In image-guided surgery, automatic bone segmentation of Computed Tomography (CT) images is an important but challenging step. Previous attempts include intensity-, edge-, region-, and deformable curve-based approaches [1], but none claims fully satisfactory performance. Although active contour (AC) techniques possess many excellent characteristics, their applications in CT image segmentation have not worthily exploited yet. In this study, we have evaluated the automaticity and performance of the model of Chan-Vese Multiphase AC Without Edges towards knee bone segmentation from CT images. This model is suitable because it is initialization-insensitive and topology-adaptive. Its segmentation results have been qualitatively compared with those from four other widely used AC models: namely Gradient Vector Flow (GVF) AC, Geometric AC, Geodesic AC, and GVF Fast Geometric AC. To quantitatively evaluate its performance, the results from a commercial software and a medical expert have been used. The evaluation results show that the Chan-Vese model provides superior performance with least user interaction, proving its suitability for automatic bone segmentation from CT images.