• Title/Summary/Keyword: Gradient Boosting regression(GBR)

Search Result 3, Processing Time 0.017 seconds

Performance Comparison of Machine-learning Models for Analyzing Weather and Traffic Accident Correlations

  • Li Zi Xuan;Hyunho Yang
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.3
    • /
    • pp.225-232
    • /
    • 2023
  • Owing to advancements in intelligent transportation systems (ITS) and artificial-intelligence technologies, various machine-learning models can be employed to simulate and predict the number of traffic accidents under different weather conditions. Furthermore, we can analyze the relationship between weather and traffic accidents, allowing us to assess whether the current weather conditions are suitable for travel, which can significantly reduce the risk of traffic accidents. In this study, we analyzed 30000 traffic flow data points collected by traffic cameras at nearby intersections in Washington, D.C., USA from October 2012 to May 2017, using Pearson's heat map. We then predicted, analyzed, and compared the performance of the correlation between continuous features by applying several machine-learning algorithms commonly used in ITS, including random forest, decision tree, gradient-boosting regression, and support vector regression. The experimental results indicated that the gradient-boosting regression machine-learning model had the best performance.

Analysis of Factors Related To Elderly Pedestrian Traffic Accients : Centered on Seoul Metropolitan City (노인보행자교통사고 요인 분석 : 서울특별시 중심으로)

  • Seong, Je Min;Yoon, Byoung-Jo
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.261-262
    • /
    • 2023
  • 보행자 교통사고는 보행자와 운행 중인 차량 간 발생한 충돌사고로 도로 및 주변 환경 등에 영항을 받는다. 이 연구에서는 2018년부터 2022년까지 서울특별시에서 발생한 노인 보행자 교통사고 자료를 수집하여 보행자 교통사고의 사고 요인을 분석하였다. 분석에 있어서 고려된 연구모형은 랜덤포레스트, Gradient Boosting regression(GBR)이다. 분석 결과 서울특별시의 지리적 특성과 교통 통행 패턴을 반영하여 교통약자를 대상으로 하는 교통정책을 보완하고, 보행 안전을 강화하는 것이 필요하다.

  • PDF

Modeling with Thin Film Thickness using Machine Learning

  • Kim, Dong Hwan;Choi, Jeong Eun;Ha, Tae Min;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.48-52
    • /
    • 2019
  • Virtual metrology, which is one of APC techniques, is a method to predict characteristics of manufactured films using machine learning with saving time and resources. As the photoresist is no longer a mask material for use in high aspect ratios as the CD is reduced, hard mask is introduced to solve such problems. Among many types of hard mask materials, amorphous carbon layer(ACL) is widely investigated due to its advantages of high etch selectivity than conventional photoresist, high optical transmittance, easy deposition process, and removability by oxygen plasma. In this study, VM using different machine learning algorithms is applied to predict the thickness of ACL and trained models are evaluated which model shows best prediction performance. ACL specimens are deposited by plasma enhanced chemical vapor deposition(PECVD) with four different process parameters(Pressure, RF power, $C_3H_6$ gas flow, $N_2$ gas flow). Gradient boosting regression(GBR) algorithm, random forest regression(RFR) algorithm, and neural network(NN) are selected for modeling. The model using gradient boosting algorithm shows most proper performance with higher R-squared value. A model for predicting the thickness of the ACL film within the abovementioned conditions has been successfully constructed.