• 제목/요약/키워드: Gradient Algorithm

검색결과 1,165건 처리시간 0.025초

Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall

  • Ge, Yaojun;Zhao, Lin
    • Wind and Structures
    • /
    • 제19권4호
    • /
    • pp.421-441
    • /
    • 2014
  • With the assistance of typhoon field data at aerial elevation level observed by meteorological satellites and wind velocity and direction records nearby the ground gathered in Guangzhou Weather Station between 1985 and 2001, some key wind field parameters under typhoon climate in Guangzhou region were calibrated based on Monte-Carlo stochastic algorithm and Meng's typhoon numerical model. By using Peak Over Threshold method (POT) and Generalized Pareto Distribution (GPD), Wind field characteristics during typhoons for various return periods in several typical engineering fields were predicted, showing that some distribution rules in relation to gradient height of atmosphere boundary layer, power-law component of wind profile, gust factor and extreme wind velocity at 1-3s time interval are obviously different from corresponding items in Chinese wind load Codes. In order to evaluate the influence of typhoon field parameters on long-span flexible bridges, 1:100 reduced-scale wind field of type B terrain was reillustrated under typhoon and normal conditions utilizing passive turbulence generators in TJ-3 wind tunnel, and wind-induced performance tests of aero-elastic model of long-span Guangzhou Xinguang arch bridge were carried out as well. Furthermore, aerodynamic admittance function about lattice cross section in mid-span arch lib under the condition of higher turbulence intensity of typhoon field was identified via using high-frequency force-measured balance. Based on identified aerodynamic admittance expressions, Wind-induced stochastic vibration of Xinguang arch bridge under typhoon and normal climates was calculated and compared, considering structural geometrical non-linearity, stochastic wind attack angle effects, etc. Thus, the aerodynamic response characteristics under typhoon and normal conditions can be illustrated and checked, which are of satisfactory response results for different oncoming wind velocities with resemblance to those wind tunnel testing data under the two types of climate modes.

연안해수유동에 관한 효율적인 수치계산기법 (Effective Simulation Technology for Near Shore Current Flow)

  • 윤범상;노준혁;등야정륭;빈전효치
    • 대한조선학회논문집
    • /
    • 제32권4호
    • /
    • pp.38-47
    • /
    • 1995
  • 연안해역에서의 해수의 유동을 추정하기 위하여, $\sigma$ 좌표계를 이용한 3차원 해수유동 수치계산 기법을 개발하여, 이를 다양한 해저지형을 가진 정방형의 유체영역 및 인천항부근의 실해역에 적용한 바 있다. 수치해의 수렴성 및 안정성에 있어서 몇가지 제약이 뒤따랐던, 기존의 수치계산기법을 다음과 같은 몇가지 개선을 하여, 수치해의 수렴성 및 안정성을 도모하였다. (1) 개방경계조건으로서 무반사 경계조건을 도입하였다. (2) 시간의 전개에 있어서, 속도장과 수면변위의 추정시각을 교대로 취하였다. (3) 운동방정식중의 이류항의 공간차분을 중앙차분법에서 상류차분법으로 치환하였다. 그 결과, 유체영역내부의 질량 및 운동량보존의 향상이 얻어졌으며, 시간영역에서의 진동이 대부분 억제되었고, 수치해의 수렴성 및 계산정도 등에 있어서 괄목할 만한 향상이 얻어졌다. 또한, 개선된 3차원 해수유동 수치계산기법과 동경대학의 3차원 해수유동 수치계산기법 상호간의 유효성을 검증하기 위하여 공동연구를 수행하였다. 물리좌표계를 이용한 동경대학의 해수유동 추정결과와, $\sigma$ 좌표계를 이용한 울산대학교의 해수유동 추정결과를 비교한 결과, 일부 다소간의 차가 생기는 점을 제외하고는 대부분 상당한 일치를 보이는 유용한 결과를 얻었다.

  • PDF

FEA based optimization of semi-submersible floater considering buckling and yield strength

  • Jang, Beom-Seon;Kim, Jae Dong;Park, Tae-Yoon;Jeon, Sang Bae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.82-96
    • /
    • 2019
  • A semi-submersible structure has been widely used for offshore drilling and production of oil and gas. The small water plane area makes the structure very sensitive to weight increase in terms of payload and stability. Therefore, it is necessary to lighten the substructure from the early design stage. This study aims at an optimization of hull structure based on a sophisticated yield and buckling strength in accordance with classification rules. An in-house strength assessment system is developed to automate the procedure such as a generation of buckling panels, a collection of required panel information, automatic buckling and yield check and so on. The developed system enables an automatic yield and buckling strength check of all panels composing the hull structure at each iteration of the optimization. Design variables are plate thickness and stiffener section profiles. In order to overcome the difficulty of large number of design variables and the computational burden of FE analysis, various methods are proposed. The steepest descent method is selected as the optimization algorithm for an efficient search. For a reduction of the number of design variables and a direct application to practical design, the stiffener section variable is determined by selecting one from a pre-defined standard library. Plate thickness is also discretized at 0.5t interval. The number of FE analysis is reduced by using equations to analytically estimating the stress changes in gradient calculation and line search steps. As an endeavor to robust optimization, the number of design variables to be simultaneously optimized is divided by grouping the scantling variables by the plane. A sequential optimization is performed group by group. As a verification example, a central column of a semi-submersible structure is optimized and compared with a conventional optimization of all design variables at once.

국지적 기상 레이다에서의 기상 변화 탐지 방법 분석 (Analysis of Detection Method for the Weather Change in a Local Weather Radar)

  • 이종길
    • 한국정보통신학회논문지
    • /
    • 제25권10호
    • /
    • pp.1345-1352
    • /
    • 2021
  • 대부분의 기상 레이다 시스템은 중장거리용으로 매우 넓은 지역의 전체적인 기상 현상을 파악하는 목적으로 사용된다. 그러나 최근에 와서는 국지적인 재난현상의 빈발 가능성이 높아짐에 따라 국지적인 기상 레이다를 활용한 기상이변 현상의 탐지가 매우 중요한 문제이다. 따라서 이러한 국지적인 기상 이변 탐지목적의 기상 레이다는 저고도 탐지 및 급변하는 기상상황의 빠른 탐지가 필요하다. 또한 상대적으로 지표면 클러터가 큰 영향을 미치게 된다. 따라서 본 논문에서에서는 풍속의 변화정도 및 거리에 따른 풍속의 변화율을 이용하여 돌풍 및 풍속 전단현상 등의 급변하는 기상 위험 등을 탐지할 수 있는 방법을 제안하고 분석하였다. 제안한 방법은 탐지과정에서의 지표면 클러터에 의한 영향을 최소화 할 수 있고 빠른 탐지를 위한 간단한 알고리즘 구현이 가능한 방식으로서 향후 기상변화 탐지에 유용하게 활용될 수 있음을 보였다.

Sparse and low-rank feature selection for multi-label learning

  • Lim, Hyunki
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권7호
    • /
    • pp.1-7
    • /
    • 2021
  • 본 논문에서는 다중 레이블 분류를 위한 특징 선별 기법을 제안한다. 기존 많은 특징 선별 기법들은 상호정보척도 등을 이용하여 특징과 레이블 사이의 연관성을 계산하여 특징을 선별하였다. 하지만 상호정보척도는 결합 확률을 요구하기 때문에 실제 전제 특징 집합에서 결합 확률을 계산하는 것은 어렵다. 따라서 소수의 특징만 계산이 가능하여 지역적 최적화만 가능하다는 단점을 가진다. 이런 지역적 최적화 문제를 피해, 주어진 특징 전체 공간에서 저랭크 공간을 구성하고, 희소성을 가진 특징들을 선별할 수 있는 특징 선별 기법을 제안한다. 이를 위해 뉴클리어 노름을 이용해 회귀 기반의 목적함수를 설계하였고, 이 목적 함수의 최적화 문제를 풀기 위한 경사하강법 방식의 알고리즘을 제안하였다. 4가지의 데이터와 3가지 다중 레이블 분류 성능을 기준으로 다중 레이블 분류 실험 결과를 통해 제안하는 방법론이 기존 특징 선별 기법보다 좋은 성능을 나타내는 것을 보였다. 또한 제안하는 목적함수의 파라미터 값 변화에도 성능 변화가 둔감한 것을 실험적인 결과로 확인하였다.

Real-time Moving Object Detection Based on RPCA via GD for FMCW Radar

  • Nguyen, Huy Toan;Yu, Gwang Hyun;Na, Seung You;Kim, Jin Young;Seo, Kyung Sik
    • 한국정보기술학회논문지
    • /
    • 제17권6호
    • /
    • pp.103-114
    • /
    • 2019
  • 주파수변조연속파형(FMCW) 레이더 시스템을 사용하는 이동 객체탐지가 최근 각광을 받고 있다. 레이더 객체탐지는 탐지범위 내 존재하는 고정된 객체 및 클러터들로부터 반사되는 잡음신호로 인해 매우 도전적인 문제이다. 본 논문에서는 FCMW 레이다를 이용하여 잡음배경하 이동객체탐지를 위해 강인한 주성분분석법(RPCA)을 이용한다. 먼저 원 레이더 입력신호에 보상과 보정을 적용한다. 다음 경사하강법을 사용하는 RPCA가 저계수의 성질을 갖는 잡음배경 모델을 구하기 위해 사용된다. 본 논문에서는 RPCA 계산을 위해 소요계산량이 적은 새로운 업데이트 알고리즘을 제안한다. 마지막으로 이동객체는 자동 다중스케일에 기반한 피크 탐지법에 의해 정위한다. 모든 단계는 슬라이딩 윈도우 방법 기반하여 처리된다. 제안된 방법을 타 RPCA 기반의 방법들과 다양한 실험 시나리오 상에서 비교했을 때, 처리 속도와 정확도 척도에서 우수한 결과를 보였다.

머신러닝을 이용한 다공형 GDI 인젝터의 플래시 보일링 분무 예측 모델 개발 (Development of Flash Boiling Spray Prediction Model of Multi-hole GDI Injector Using Machine Learning)

  • 상몽소;신달호;;박수한
    • 한국분무공학회지
    • /
    • 제27권2호
    • /
    • pp.57-65
    • /
    • 2022
  • The purpose of this study is to use machine learning to build a model capable of predicting the flash boiling spray characteristics. In this study, the flash boiling spray was visualized using Shadowgraph visualization technology, and then the spray image was processed with MATLAB to obtain quantitative data of spray characteristics. The experimental conditions were used as input, and the spray characteristics were used as output to train the machine learning model. For the machine learning model, the XGB (extreme gradient boosting) algorithm was used. Finally, the performance of machine learning model was evaluated using R2 and RMSE (root mean square error). In order to have enough data to train the machine learning model, this study used 12 injectors with different design parameters, and set various fuel temperatures and ambient pressures, resulting in about 12,000 data. By comparing the performance of the model with different amounts of training data, it was found that the number of training data must reach at least 7,000 before the model can show optimal performance. The model showed different prediction performances for different spray characteristics. Compared with the upstream spray angle and the downstream spray angle, the model had the best prediction performance for the spray tip penetration. In addition, the prediction performance of the model showed a relatively poor trend in the initial stage of injection and the final stage of injection. The model performance is expired to be further enhanced by optimizing the hyper-parameters input into the model.

스마트폰 과의존 판별을 위한 기계 학습 기법의 응용 (Application of Machine Learning Techniques for Problematic Smartphone Use)

  • 김우성;한준희
    • 아태비즈니스연구
    • /
    • 제13권3호
    • /
    • pp.293-309
    • /
    • 2022
  • Purpose - The purpose of this study is to explore the possibility of predicting the degree of smartphone overdependence based on mobile phone usage patterns. Design/methodology/approach - In this study, a survey conducted by Korea Internet and Security Agency(KISA) called "problematic smartphone use survey" was analyzed. The survey consists of 180 questions, and data were collected from 29,712 participants. Based on the data on the smartphone usage pattern obtained through the questionnaire, the smartphone addiction level was predicted using machine learning techniques. k-NN, gradient boosting, XGBoost, CatBoost, AdaBoost and random forest algorithms were employed. Findings - First, while various factors together influence the smartphone overdependence level, the results show that all machine learning techniques perform well to predict the smartphone overdependence level. Especially, we focus on the features which can be obtained from the smartphone log data (without psychological factors). It means that our results can be a basis for diagnostic programs to detect problematic smartphone use. Second, the results show that information on users' age, marriage and smartphone usage patterns can be used as predictors to determine whether users are addicted to smartphones. Other demographic characteristics such as sex or region did not appear to significantly affect smartphone overdependence levels. Research implications or Originality - While there are some studies that predict smartphone overdependence level using machine learning techniques, but the studies only present algorithm performance based on survey data. In this study, based on the information gain measure, questions that have more influence on the smartphone overdependence level are presented, and the performance of algorithms according to the questions is compared. Through the results of this study, it is shown that smartphone overdependence level can be predicted with less information if questions about smartphone use are given appropriately.

Income prediction of apple and pear farmers in Chungnam area by automatic machine learning with H2O.AI

  • Hyundong, Jang;Sounghun, Kim
    • 농업과학연구
    • /
    • 제49권3호
    • /
    • pp.619-627
    • /
    • 2022
  • In Korea, apples and pears are among the most important agricultural products to farmers who seek to earn money as income. Generally, farmers make decisions at various stages to maximize their income but they do not always know exactly which option will be the best one. Many previous studies were conducted to solve this problem by predicting farmers' income structure, but researchers are still exploring better approaches. Currently, machine learning technology is gaining attention as one of the new approaches for farmers' income prediction. The machine learning technique is a methodology using an algorithm that can learn independently through data. As the level of computer science develops, the performance of machine learning techniques is also improving. The purpose of this study is to predict the income structure of apples and pears using the automatic machine learning solution H2O.AI and to present some implications for apple and pear farmers. The automatic machine learning solution H2O.AI can save time and effort compared to the conventional machine learning techniques such as scikit-learn, because it works automatically to find the best solution. As a result of this research, the following findings are obtained. First, apple farmers should increase their gross income to maximize their income, instead of reducing the cost of growing apples. In particular, apple farmers mainly have to increase production in order to obtain more gross income. As a second-best option, apple farmers should decrease labor and other costs. Second, pear farmers also should increase their gross income to maximize their income but they have to increase the price of pears rather than increasing the production of pears. As a second-best option, pear farmers can decrease labor and other costs.

Intelligent & Predictive Security Deployment in IOT Environments

  • Abdul ghani, ansari;Irfana, Memon;Fayyaz, Ahmed;Majid Hussain, Memon;Kelash, Kanwar;fareed, Jokhio
    • International Journal of Computer Science & Network Security
    • /
    • 제22권12호
    • /
    • pp.185-196
    • /
    • 2022
  • The Internet of Things (IoT) has become more and more widespread in recent years, thus attackers are placing greater emphasis on IoT environments. The IoT connects a large number of smart devices via wired and wireless networks that incorporate sensors or actuators in order to produce and share meaningful information. Attackers employed IoT devices as bots to assault the target server; however, because of their resource limitations, these devices are easily infected with IoT malware. The Distributed Denial of Service (DDoS) is one of the many security problems that might arise in an IoT context. DDOS attempt involves flooding a target server with irrelevant requests in an effort to disrupt it fully or partially. This worst practice blocks the legitimate user requests from being processed. We explored an intelligent intrusion detection system (IIDS) using a particular sort of machine learning, such as Artificial Neural Networks, (ANN) in order to handle and mitigate this type of cyber-attacks. In this research paper Feed-Forward Neural Network (FNN) is tested for detecting the DDOS attacks using a modified version of the KDD Cup 99 dataset. The aim of this paper is to determine the performance of the most effective and efficient Back-propagation algorithms among several algorithms and check the potential capability of ANN- based network model as a classifier to counteract the cyber-attacks in IoT environments. We have found that except Gradient Descent with Momentum Algorithm, the success rate obtained by the other three optimized and effective Back- Propagation algorithms is above 99.00%. The experimental findings showed that the accuracy rate of the proposed method using ANN is satisfactory.