• 제목/요약/키워드: Governing equation

Search Result 1,281, Processing Time 0.029 seconds

Transient Elastodynamic Analysis By BEM Using DDM (DDM과 경계요쇼법을 이용한 동탄성 해석)

  • Shin, Dong-Hoon;Owatsiriwong, Adisorn;Park, Han-Gyu;Park, Kyung-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.534-535
    • /
    • 2009
  • This paper deals with BEM analysis of transient elastodynamic problems using domain decomposition method and particular integrals. The particular method is used to approximate the acceleration term in the governing equation. The domain decomposition method is examined to consider multi-region problems. The domain of the original problem is subdivided into sub-regions, which are modeled by the particular integral BEM. The iterative coupling employing Schwarz algorithm is used for the successive update of the interface boundary conditions until convergence is achieved. The numerical results, compared with those by ABAQUS, demonstrate the validity of the present formulation.

  • PDF

The estimation of first order derivative phase error using iterative algorithm in SAR imaging system (SAR(Synthetic Aperture Radar)Imaging 시스템에서 제안 알고리즘의 반복수행을 통한 위상오차의 기울기 추정기법 연구)

  • 김형주;최정희
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.505-508
    • /
    • 2000
  • The success of target reconstruction in SAR(Synthetic Aperture Radar) imaging system is greatly dependent on the coherent detection. Primary causes of incoherent detection are uncompensated target or sensor motion, random turbulence in propagation media, wrong path in radar platform, and etc. And these appear as multiplicative phase error to the echoed signal, which consequently, causes fatal degradations such as fading or dislocation of target image. In this paper, we present iterative phase error estimation scheme which uses echoed data in all temporal frequencies. We started with analyzing wave equation for one point target and extend to overall echoed data from the target scene - The two wave equations governing the SAR signal at two temporal frequencies of the radar signal are combined to derive a method to reconstruct the complex phase error function. Eventually, this operation attains phase error correction algorithm from the total received SAR signal. We verify the success of the proposed algorithm by applying it to the simulated spotlight-mode SAR data.

  • PDF

Geometrical nonlinear bending characteristics of SWCNTRC doubly curved shell panels

  • Chavan, Shivaji G.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.21-49
    • /
    • 2018
  • In this paper, geometric nonlinear bending characteristics of single wall carbon nanotube reinforced composite (SWCNTRC) doubly curved shell panels subjected to uniform transversely loadings are investigated. The nonlinear mathematical model is developed for doubly curved SWCNTRC shell panel on the basis of higher-order shear deformation theory and Green- Lagrange nonlinearity. All nonlinear higher order terms are included in the mathematical model. The effective material properties of SWCNTRC are estimated by using Eshelby-Mori-Tanaka micromechanical approach. The governing equation of the shell panel is obtained using the total potential energy principle and a Newton-Raphson iterative method is employed to compute the nonlinear displacement and stresses. The present results are compared with published literature. The effect of SWCNT volume fraction, width-to-thickness ratio, radius-to-width ratio (R/a), boundary condition, linear and nonlinear deflection, stresses and different types of shell geometry on nonlinear bending response is investigated.

Micromechanical failure analysis of composite materials subjected to biaxial and off-axis loading

  • Ahmadi, Isa
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.43-54
    • /
    • 2017
  • In this study, the failure behavior of composite material in the biaxial and off-axis loading is studied based on a computational micromechanical model. The model is developed so that the combination of mechanical and thermal loading conditions can be considered in the analysis. The modified generalized plane strain assumption of the theory of elasticity is used for formulation of the micromechanical modeling of the problem. A truly meshless method is employed to solve the governing equation and predict the distribution of micro-stresses in the selected RVE of composite. The fiber matrix interface is assumed to be perfect until the interface failure occurs. The biaxial and off-axis loading of the SiC/Ti and Kevlar/Epoxy composite is studied. The failure envelopes of SiC/Ti and Kevlar/Epoxy composite in off-axis loading, biaxial transverse-transverse and axial-transverse loading are predicted based on the micromechanical approach. Various failure criteria are considered for fiber, matrix and fiber-matrix interface. Comparison of results with the available results in the litreture shows excellent agreement with experimental studies.

Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams

  • Sarkar, Korak;Ganguli, Ranjan;Elishakoff, Isaac
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.455-470
    • /
    • 2016
  • In this paper, we investigate the free vibration of axially loaded non-uniform Rayleigh cantilever beams. The Rayleigh beams account for the rotary inertia effect which is ignored in Euler-Bernoulli beam theory. Using an inverse problem approach we show, that for certain polynomial variations of the mass per unit length and the flexural stiffness, there exists a fundamental closed form solution to the fourth order governing differential equation for Rayleigh beams. The derived property variation can serve as test functions for numerical methods. For the rotating beam case, the results have been compared with those derived using the Euler-Bernoulli beam theory.

Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers

  • Singh, Vijay K.;Panda, Subrata K.
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.853-872
    • /
    • 2015
  • Numerical analysis of large amplitude free vibration behaviour of laminated composite spherical shell panel embedded with the piezoelectric layer is presented in this article. For the investigation purpose, a general nonlinear mathematical model has been developed using higher order shear deformation mid-plane kinematics and Green-Lagrange nonlinearity. In addition, all the nonlinear higher order terms are included in the present mathematical model to achieve any general case. The nonlinear governing equation of freely vibrated shell panel is obtained using Hamilton's principle and discretised using isoparametric finite element steps. The desired nonlinear solutions are computed numerically through a direct iterative method. The validity of present nonlinear model has been checked by comparing the responses to those available published literature. In order to examine the efficacy and applicability of the present developed model, few numerical examples are solved for different geometrical parameters (fibre orientation, thickness ratio, aspect ratio, curvature ratio, support conditions and amplitude ratio) with and/or without piezo embedded layers and discussed in details.

Analysis of flow through dam foundation by FEM and ANN models Case study: Shahid Abbaspour Dam

  • Shahrbanouzadeh, Mehrdad;Barani, Gholam Abbas;Shojaee, Saeed
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.465-481
    • /
    • 2015
  • Three-dimensional simulation of flow through dam foundation is performed using finite element (Seep3D model) and artificial neural network (ANN) models. The governing and discretized equation for seepage is obtained using the Galerkin method in heterogeneous and anisotropic porous media. The ANN is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning, using the water level elevations of the upstream and downstream of the dam, as input variables and the piezometric heads as the target outputs. The obtained results are compared with the piezometric data of Shahid Abbaspour's Dam. Both calculated data show a good agreement with available measurements that demonstrate the effectiveness and accuracy of purposed methods.

Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis

  • Hussain, Muzamal;Naeem, Muhammad N.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.8 no.3
    • /
    • pp.229-244
    • /
    • 2020
  • In this paper, modified Kelvin's model has been used to analyze the orthotropic vibration frequencies of single walled carbon nanotubes with clamped-clamped and clamped-free boundary conditions. For this system the governing equation is developed with wave propagation approach. Armchair, zigzag and chiral structures are considered for the vibrational analysis to investigate the effect of different modes, in-plane rigidity and mass density per unit lateral area. Throughout the computations, on decreasing the length-to-diameter ratios, the frequencies of said structure increases. In addition, by increasing three different value of in-plane rigidity resulting frequencies also increase and frequencies decrease on increasing mass density per unit lateral area. The results generated using computer software MATLAB to furnish the evidence regarding applicability of present model and also verified by available published literature.

Improved Momentum Exchange Theory for Incompressible Regenerative Turbomachines (I) - Hydraulic Model - (비압축성 재생형 기계에 대한 개선된 운동량 교환 이론 (I) - 수력학적 모델 -)

  • Park Mu Ryong;Chung Myung Kyoon;Yoo Il Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1238-1246
    • /
    • 2004
  • Momentum exchange theory has been generally used for an analysis of the regenerative turbomachines due to its direct description of the complicate circulatory flow. However, because its application is limited only to linear region and its model equations are incomplete on three variables, it needs further refinements. In the present study it is improved by introducing a central pivot of circulatory flow. Also, by assuming linear circulatory velocity distribution, mean radii of inlet and outlet flows through the impeller are newly suggested. By applying control volume analysis to both linear region and the acceleration region, the governing equation on the circulatory velocity is derived. As a result, systematic performance analysis on the entire region of the incompressible regenerative turbomachines can be carried out based on the proposed model equations.

Effect of viscous damping force subjected to a rotating flexible disk (점성감쇠력이 회전탄성원판에 미치는 영향)

  • Kong, Dae-Wee;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.185-190
    • /
    • 2001
  • Rotating disks are used in various machines such as floppy disks, hard disk, turbines and circular sawblades. The problems of vibrations of rotating disks are important in improving these machines. Many investigators have dealt with these problem. Specially, vibrations of a rotating flexible disk taking into account the effect of air is difficult problem in simulation. The governing equation of a rotating flexible disk coupled to the surrounding fluid is investigated by a simple mathematical model. And several important parameters concerned with the stability of a rotating flexible disk are defined. Coupling strength between air and rotating flexible disk is proportional to square of disk radius directly and square root of the all of bending rigidity, disk density and thickness inversely. Lift-to-damping coefficient has relation to the onset of disk flutter.

  • PDF