• Title/Summary/Keyword: Google popular times

Search Result 2, Processing Time 0.021 seconds

Estimating the Method of the Number of Visitors of Water-friendly Park Using GPS Location Information (GPS 위치정보를 활용한 친수공원 이용객 수 추정방법 연구)

  • Kim, Seong-Jun;Kim, Tae-Jeong;Kim, Chang-Sung
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.171-180
    • /
    • 2020
  • With the increase in industrialization and urbanization, scarcity of space for leisure life has become an important issue. Opportunities such as natural scenery and ecological experiences provided by waterfront spaces around streams are fundamental factors in the development of the community and creation of a hydrophilic park. In the past, on-site surveys have been conducted using human resources to quantify the number of river visitors, but the accuracy of the results was not sufficient owing to limitations in expenses, manpower, space, and time. In this study, to overcome this problem, we estimated the number of visitors using the location information related to hydrophilic parks. The study areas were Samrak Ecological Park and Daejeo Ecological Park located downstream of the Nakdong River. We compared and analyzed the pattern of the visitors by using the large communication data and the visiting pattern based on GPS location information. The GPS location information is based on Google Popular Times and Kakao visitor data. When the GPS location data were used, the pattern for weekday and weekend visitors was clearer than when the large communication data were used. Therefore, it is expected to be similar to the result of GPS location information if the number of visitors is extracted under the condition of precision of pCELL size and residence time of 30 minutes or more when using future communication big data. In addition, if revisions such as the Personal Information Protection Act are made to extract more accurate data, by estimating the number of visitors based on GPS data, more accurate indicators of the number of visitors can be derived.

Comparison of Deep Learning Frameworks: About Theano, Tensorflow, and Cognitive Toolkit (딥러닝 프레임워크의 비교: 티아노, 텐서플로, CNTK를 중심으로)

  • Chung, Yeojin;Ahn, SungMahn;Yang, Jiheon;Lee, Jaejoon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.1-17
    • /
    • 2017
  • The deep learning framework is software designed to help develop deep learning models. Some of its important functions include "automatic differentiation" and "utilization of GPU". The list of popular deep learning framework includes Caffe (BVLC) and Theano (University of Montreal). And recently, Microsoft's deep learning framework, Microsoft Cognitive Toolkit, was released as open-source license, following Google's Tensorflow a year earlier. The early deep learning frameworks have been developed mainly for research at universities. Beginning with the inception of Tensorflow, however, it seems that companies such as Microsoft and Facebook have started to join the competition of framework development. Given the trend, Google and other companies are expected to continue investing in the deep learning framework to bring forward the initiative in the artificial intelligence business. From this point of view, we think it is a good time to compare some of deep learning frameworks. So we compare three deep learning frameworks which can be used as a Python library. Those are Google's Tensorflow, Microsoft's CNTK, and Theano which is sort of a predecessor of the preceding two. The most common and important function of deep learning frameworks is the ability to perform automatic differentiation. Basically all the mathematical expressions of deep learning models can be represented as computational graphs, which consist of nodes and edges. Partial derivatives on each edge of a computational graph can then be obtained. With the partial derivatives, we can let software compute differentiation of any node with respect to any variable by utilizing chain rule of Calculus. First of all, the convenience of coding is in the order of CNTK, Tensorflow, and Theano. The criterion is simply based on the lengths of the codes and the learning curve and the ease of coding are not the main concern. According to the criteria, Theano was the most difficult to implement with, and CNTK and Tensorflow were somewhat easier. With Tensorflow, we need to define weight variables and biases explicitly. The reason that CNTK and Tensorflow are easier to implement with is that those frameworks provide us with more abstraction than Theano. We, however, need to mention that low-level coding is not always bad. It gives us flexibility of coding. With the low-level coding such as in Theano, we can implement and test any new deep learning models or any new search methods that we can think of. The assessment of the execution speed of each framework is that there is not meaningful difference. According to the experiment, execution speeds of Theano and Tensorflow are very similar, although the experiment was limited to a CNN model. In the case of CNTK, the experimental environment was not maintained as the same. The code written in CNTK has to be run in PC environment without GPU where codes execute as much as 50 times slower than with GPU. But we concluded that the difference of execution speed was within the range of variation caused by the different hardware setup. In this study, we compared three types of deep learning framework: Theano, Tensorflow, and CNTK. According to Wikipedia, there are 12 available deep learning frameworks. And 15 different attributes differentiate each framework. Some of the important attributes would include interface language (Python, C ++, Java, etc.) and the availability of libraries on various deep learning models such as CNN, RNN, DBN, and etc. And if a user implements a large scale deep learning model, it will also be important to support multiple GPU or multiple servers. Also, if you are learning the deep learning model, it would also be important if there are enough examples and references.