• Title/Summary/Keyword: Google AI

Search Result 87, Processing Time 0.025 seconds

Keyword Analysis of Data Technology Using Big Data Technique (빅데이터 기법을 활용한 Data Technology의 키워드 분석)

  • Park, Sung-Uk
    • Journal of Korea Technology Innovation Society
    • /
    • v.22 no.2
    • /
    • pp.265-281
    • /
    • 2019
  • With the advent of the Internet-based economy, the dramatic changes in consumption patterns have been witnessed during the last decades. The seminal change has led by Data Technology, the integrated platform of mobile, online, offline and artificial intelligence, which remained unchallenged. In this paper, I use data analysis tool (TexTom) in order to articulate the definitfite notion of data technology from Internet sources. The data source is collected for last three years (November 2015 ~ November 2018) from Google and Naver. And I have derived several key keywords related to 'Data Technology'. As a result, it was found that the key keyword technologies of Big Data, O2O (Offline-to-Online), AI, IoT (Internet of things), and cloud computing are related to Data Technology. The results of this study can be used as useful information that can be referred to when the Data Technology age comes.

Analysis of Meta Fashion Meaning Structure using Big Data: Focusing on the keywords 'Metaverse' + 'Fashion design' (빅데이터를 활용한 메타패션 의미구조 분석에 관한 연구: '메타버스' + '패션디자인' 키워드를 중심으로)

  • Ji-Yeon Kim;Shin-Young Lee
    • Fashion & Textile Research Journal
    • /
    • v.25 no.5
    • /
    • pp.549-559
    • /
    • 2023
  • Along with the transition to the fourth industrial revolution, the possibility of metaverse-based innovation in the fashion field has been confirmed, and various applications are being sought. Therefore, this study performs meaning structure analysis and discusses the prospects of meta fashion using big data. From 2020 to 2022, data including the keyword "metaverse + fashion design" were collected from portal sites (Naver, Daum, and Google), and the results of keyword frequency, N-gram, and TF-IDF analyses were derived using text mining. Furthermore, network visualization and CONCOR analysis were performed using Ucinet 6 to understand the interconnected structure between keywords and their essential meanings. The results were as follows: The main keywords appeared in the following order: fashion, metaverse, design, 3D, platform, apparel, and virtual. In the N-gram analysis, the density between fashion and metaverse words was high, and in the TF-IDF analysis results, the importance of content- and technology-related words such as 3D, apparel, platform, NFT, education, AI, avatar, MCM, and meta-fashion was confirmed. Through network visualization and CONCOR analysis using Ucinet 6, three cluster results were derived from the top emerging words: "metaverse fashion design and industry," "metaverse fashion design and education," and "metaverse fashion design platform." CONCOR analysis was also used to derive differentiated analysis results for middle and lower words. The results of this study provide useful information to strengthen competitiveness in the field of metaverse fashion design.

A method for metadata extraction from a collection of records using Named Entity Recognition in Natural Language Processing (자연어 처리의 개체명 인식을 통한 기록집합체의 메타데이터 추출 방안)

  • Chiho Song
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.24 no.2
    • /
    • pp.65-88
    • /
    • 2024
  • This pilot study explores a method of extracting metadata values and descriptions from records using named entity recognition (NER), a technique in natural language processing (NLP), a subfield of artificial intelligence. The study focuses on handwritten records from the Guro Industrial Complex, produced during the 1960s and 1970s, comprising approximately 1,200 pages and 80,000 words. After the preprocessing process of the records, which included digitization, the study employed a publicly available language API based on Google's Bidirectional Encoder Representations from Transformers (BERT) language model to recognize entity names within the text. As a result, 173 names of people and 314 of organizations and institutions were extracted from the Guro Industrial Complex's past records. These extracted entities are expected to serve as direct search terms for accessing the contents of the records. Furthermore, the study identified challenges that arose when applying the theoretical methodology of NLP to real-world records consisting of semistructured text. It also presents potential solutions and implications to consider when addressing these issues.

Timely Sensor Fault Detection Scheme based on Deep Learning (딥 러닝 기반 실시간 센서 고장 검출 기법)

  • Yang, Jae-Wan;Lee, Young-Doo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.163-169
    • /
    • 2020
  • Recently, research on automation and unmanned operation of machines in the industrial field has been conducted with the advent of AI, Big data, and the IoT, which are the core technologies of the Fourth Industrial Revolution. The machines for these automation processes are controlled based on the data collected from the sensors attached to them, and further, the processes are managed. Conventionally, the abnormalities of sensors are periodically checked and managed. However, due to various environmental factors and situations in the industrial field, there are cases where the inspection due to the failure is not missed or failures are not detected to prevent damage due to sensor failure. In addition, even if a failure occurs, it is not immediately detected, which worsens the process loss. Therefore, in order to prevent damage caused by such a sudden sensor failure, it is necessary to identify the failure of the sensor in an embedded system in real-time and to diagnose the failure and determine the type for a quick response. In this paper, a deep neural network-based fault diagnosis system is designed and implemented using Raspberry Pi to classify typical sensor fault types such as erratic fault, hard-over fault, spike fault, and stuck fault. In order to diagnose sensor failure, the network is constructed using Google's proposed Inverted residual block structure of MobilieNetV2. The proposed scheme reduces memory usage and improves the performance of the conventional CNN technique to classify sensor faults.

Application and Analysis of Remote Sensing Data for Disaster Management in Korea - Focused on Managing Drought of Reservoir Based on Remote Sensing - (국가 재난 관리를 위한 원격탐사 자료 분석 및 활용 - 원격탐사기반 저수지 가뭄 관리를 중심으로 -)

  • Kim, Seongsam;Lee, Junwoo;Koo, Seul;Kim, Yongmin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1749-1760
    • /
    • 2022
  • In modern society, human and social damages caused by natural disasters and frequent disaster accidents have been increased year by year. Prompt access to dangerous disaster sites that are inaccessible or inaccessible using state-of-the-art Earth observation equipment such as satellites, drones, and survey robots, and timely collection and analysis of meaningful disaster information. It can play an important role in protecting people's property and life throughout the entire disaster management cycle, such as responding to disaster sites and establishing mid-to long-term recovery plans. This special issue introduces the National Disaster Management Research Institute (NDMI)'s disaster management technology that utilizes various Earth observation platforms, such as mobile survey vehicles equipped with close-range disaster site survey sensors, drones, and survey robots, as well as satellite technology, which is a tool of remote earth observation. Major research achievements include detection of damage from water disasters using Google Earth Engine, mid- and long-term time series observation, detection of reservoir water bodies using Sentinel-1 Synthetic Aperture Radar (SAR) images and artificial intelligence, analysis of resident movement patterns in case of forest fire disasters, and data analysis of disaster safety research. Efficient integrated management and utilization plan research results are summarized. In addition, research results on scientific investigation activities on the causes of disasters using drones and survey robots during the investigation of inaccessible and dangerous disaster sites were described.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

The Trend of Aviation Terrorism in the 4th Industrial Revolution Period and the Development Direction for Domestic Counter Terrorism of Aviation (제4차 산업혁명 시대의 항공 테러리즘 양상 및 국내 항공테러 대응체계 발전방향)

  • Hwang, Ho-Won;Kim, Seung-Woo
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.32 no.2
    • /
    • pp.155-188
    • /
    • 2017
  • On the one hand, the 4th Industrial Revolution provides a positive opportunity to build a new civilization paradigm for mankind. However, on the other hand, due to the 4th Industrial Revolution, artificial intelligence such as 'Goggle Alpha Go' revolutionized and even the human ability was replaced with a 'Silicon Chip' as the opportunity to communicate decreases, the existence of human beings is weakened. And there is a growing concern that the number of violent crimes, such as psychopath, which hunts humans as games, will increase. Moreover, recent international terrorism is being developed in a form similar to 'Psychopathic Violent-Crime' that indiscriminately attacks innocent people. So, the probability that terrorist organizations abuse the positive effects provided by the Fourth Industrial Revolution as means of terrorism is increasing. Therefore, the paradigm of aviation terrorism is expected to change in a way that attacks airport facilities and users rather than aircraft. Because airport facilities are crowded, and psychopathic terrorists are easily accessible. From this point of view, our counter terrorism system of aviation has many weak points in various aspects such as: (1) limitations of counter-terrorism center (2) inefficient on-site command and control system (3) separated organization for aviation security consultation (4) dispersed information collection function in government (5) vulnerable to cyber attack (6) lack of international cooperation network for aviation terrorism. Consequently, it is necessary to improve the domestic counter terrorism system of aviation so as to preemptively respond to the international terrorism. This study propose the following measures to improve the aviation security system by (1) create 'Aviation Special Judicial Police' (2) revise the anti-terrorism law and aviation security law (3) Strengthening the ability respond to terrorism in cyberspace (4) building an international cooperation network for aviation terrorism.

  • PDF