• Title/Summary/Keyword: Good School Uniform

Search Result 123, Processing Time 0.047 seconds

Processing of Polyurethane/polystyrene Hybrid Foam and Numerical Simulation

  • Lee, Won Ho;Lee, Seok Won;Kang, Tae Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.3 no.4
    • /
    • pp.159-168
    • /
    • 2002
  • Polyurethane foams were produced by using a homogenizer as a mixing equipment. Effects of stirring speed on the foam structure were investigated with SEM observations. Variation of the bubble size, density of the foam, compressive strength, and thermal conductivity were studied. A hybrid foam consisting of polyurethane foam and commercial polystyrene foam is produced. Mechanical and thermal properties of the hybrid foam were compared with those of pure polyurethane foam. Advancement of flow front during mold filling was observed by using a digital camcorder. Four types of mold geometry were used for mold filling experiments. Flow during mold filling was analyzed by using a two-dimensional control volume finite element method. Variation of foam density with respect to time was experimentally measured. Creeping flow, uniform density, uniform conversion, and uniform temperature were assumed for the numerical simulation. It was assumed for the numerical analysis that the cavity has thin planar geometry and the viscosity is constant. The theoretical predictions were compared with the experimental results and showed good agreement.

Non-uniform virtual material modeling on contact interface of assembly structure with bolted joints

  • Cao, Jianbin;Zhang, Zhousuo;Yang, Wenzhan;Guo, Yanfei
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.557-568
    • /
    • 2019
  • Accurate modeling of contact interface in bolted joints is crucial in predicting the dynamic behavior for bolted assemblies under external load. This paper presents a contact pressure distribution based non-uniform virtual material method to describe the joint interface of assembly structure, which is connected by sparsely distributed multi-bolts. Firstly, the contact pressure distribution of bolted joints is obtained by the nonlinear static analysis in the finite element software ANSYS. The contact surface around bolt hole is divided into several sub-layers, and contact pressure in each sub-layer is thought to be evenly. Then, considering multi-asperity contact at the micro perspective, the relationship between contact pressure and interfacial virtual material parameters for each sub-layer is established by using the fractal contact theory. Finally, an experimental platform for the dynamic characteristics testing of a beam lap structure with double-bolted joint is constructed to validate the efficiency of proposed method. It is found that the theoretical results are in good agreement with experimental results by impact response in both time- and frequency-domain, and the relative errors of the first four natural frequencies are less than 1%. Furthermore, the presented model is used to examine the effect of rough contact surface on dynamic characteristics of bolted joint.

Large-scale Synthesis of Uniform-sized Nanoparticles for Multifunctional Medical Applications

  • Hyeon, Taeg-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.1-1
    • /
    • 2011
  • We developed a new generalized synthetic procedure, called as "heat-up process," to produce uniform-sized nanocrystals of many transition metals and oxides without a size selection process. We were able to synthesize uniform magnetite nanocrystals as much as 1 kilogram-scale from the thermolysis of Fe-oleate complex. Clever combination of different nanoscale materials will lead to the development of multifunctional nano-biomedical platforms for simultaneous targeted delivery, fast diagnosis, and efficient therapy. In this presentation, I would like to present some of our group's recent results on the designed fabrication of multifunctional nanostructured materials based on uniform-sized magnetite nanoparticles and their medical applications. Uniform ultrasmall iron oxide nanoparticles of <3 nm were synthesized by thermal decomposition of iron-oleate complex in the presence of oleyl alcohol. These ultrasmall iron oxide nanoparticles exhibited good T1 contrast effect. In in vivo T1 weighted blood pool magnetic resonance imaging (MRI), iron oxide nanoparticles showed longer circulation time than commercial gadolinium complex, enabling high resolution imaging. We used 80 nm-sized ferrimagnetic iron oxide nanocrystals for T2 MRI contrast agent for tracking transplanted pancreatic islet cells and single-cell MR imaging. We reported on the fabrication of monodisperse magnetite nanoparticles immobilized with uniform pore-sized mesoporous silica spheres for simultaneous MRI, fluorescence imaging, and drug delivery. We synthesized hollow magnetite nanocapsules and used them for both the MRI contrast agent and magnetic guided drug delivery vehicle.

  • PDF

Indoor Link Quality Comparison of IEEE 802.11a Channels in a Multi-radio Mesh Network Testbed

  • Bandaranayake, Asitha U;Pandit, Vaibhav;Agrawal, Dharma P.
    • Journal of Information Processing Systems
    • /
    • v.8 no.1
    • /
    • pp.1-20
    • /
    • 2012
  • The most important criterion for achieving the maximum performance in a wireless mesh network (WMN) is to limit the interference within the network. For this purpose, especially in a multi-radio network, the best option is to use non-overlapping channels among different radios within the same interference range. Previous works that have considered non-overlapping channels in IEEE 802.11a as the basis for performance optimization, have considered the link quality across all channels to be uniform. In this paper, we present a measurement-based study of link quality across all channels in an IEEE 802.11a-based indoor WMN test bed. Our results show that the generalized assumption of uniform performance across all channels does not hold good in practice for an indoor environment and signal quality depends on the geometry around the mesh routers.

Non-uniform shrinkage in simply-supported composite steel-concrete slabs

  • Al-Deen, Safat;Ranzi, Gianluca;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.375-394
    • /
    • 2015
  • This paper presents the results of four long-term experiments carried out to investigate the time-dependent behaviour of composite floor slabs with particular attention devoted to the development of non-uniform shrinkage through the slab thickness. This is produced by the presence of the steel deck which prevents moisture egress to occur from the underside of the slab. To observe the influence of different drying conditions on the development of shrinkage, the four 3.3 m long specimens consisted of two composite slabs cast on Stramit Condeck $HP^{(R)}$ steel deck and two reinforced concrete slabs, with the latter ones having both faces exposed for drying. During the long-term tests, the samples were maintained in a simply-supported configuration subjected to their own self-weight, creep and shrinkage for four months. Separate concrete samples were prepared and used to measure the development of shrinkage through the slab thickness over time for different drying conditions. A theoretical model was used to predict the time-dependent behaviour of the composite and reinforced concrete slabs. This approach was able to account for the occurrence of non-uniform shrinkage and comparisons between numerical results and experimental measurements showed good agreement. This work highlights the importance of considering the shrinkage gradient in predicting shrinkage deformations of composite slabs. Further comparisons with experimental results are required to properly validate the adequacy of the proposed approach for its use in routine design.

The perception of girls' middle & high school students in Seoul on the usage of trousers as school uniform (서울시 여자 중.고등학교 학생의 바지교복에 대한 착용실태 및 인식)

  • Kim, Sung-Sil;Shin, Hye-Won
    • Journal of Korean Home Economics Education Association
    • /
    • v.22 no.1
    • /
    • pp.137-148
    • /
    • 2010
  • The usage status of trousers as school uniform for girl's middle and high school students in Seoul and the perception on trousers as school uniform were analyzed. Students who wore 'skirts only' were the greatest and students who wore 'trousers only' were higher in the case of winter uniform than in summer uniform. The most popular reason to wear skirts was 'because most of their fellow students wore skirts' in both winter and summer. The main reason for wearing trousers was 'because it was easy to cope with changes in temperature' in winter and 'because it allowed more comfortable movements' in summer. Students who wore trousers were generally satisfied with wearing trousers as school uniforms. However, they showed a low degree of satisfaction about design and color of trousers. The students preferred slim and straight trousers, and black col or with beige and blue being the next color. Students in general had low level of recognition for the need to wear trousers. Students perceived trousers as being cold-proof and comfortable for physical activities. But they also perceived that trousers were not suitable for improving their appearances and expressing their characteristics. Especially, the students who wore trousers tended to think that trousers reduced their cares for their personal attire and that trousers were good for wearing after school, but the students who did not wear trousers were found to think contrary.

  • PDF

Development of High-definition PDP(Plasma Display Panel) Barrier Ribs Using Watersoluble UV-curing Resin (수용성 UV경화성 수지를 이용한 고품질 PDP용 격벽제작 기술 개발)

  • Nam, Su-Yong;Woo, Jin-Ho;Lee, Mi-Young;Lee, Gab-Hee;Kim, Goang-Young
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.21 no.2
    • /
    • pp.67-74
    • /
    • 2003
  • Barrier ribs for PDP(plasma display panel) are commonly utilized to have uniform height and width and to prevent opical crosstalk between adjacent cells. The requirements for such barrier ribs are uniform height and shape, low outgassing rate and low porosity, high aspect ratio, and fine resolution. In this study, we are studied about that to make efficiency of material and high quality barrier ribs for PDP. As a result, could got high barrier ribs of $140{\mu}m$ evenly in 1th phenomenon using watersoluble UV curing resin and know that flatness of upper part is also very good.

  • PDF

Gold Stripe Optical Waveguides Fabricated by a Novel Double-Layered Liftoff Process

  • Kim, Jin-Tae;Park, Sun-Tak;Park, Seung-Koo;Kim, Min-Su;Lee, Myung-Hyun;Ju, Jung-Jin
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.778-783
    • /
    • 2009
  • To fabricate uniform and reliable thin gold stripes that provide low-loss optical waveguides, we developed a novel liftoff process placing an additional $SiN_x$ layer under conventional photoresists. By patterning a photoresist and over-etching the $SiN_x$, the photoresist patterns become free-standing structures on a lower-cladding. This leads to uniform metal stripes with good reproducibility and effectively removes parasitic structures on the edge of the metal stripe in the image reversal photolithography process. By applying the newly developed process to polymer-based gold stripe waveguide fabrication, we improved the propagation losses about two times compared with that incurred by the conventional image-reversal process.

Fabrication of CNT Flexible Field Emitters and Their Field Emission Properties

  • Shin, Dong-Hoon;Song, Yenan;Sun, Yuning;Shin, Ji-Hong;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.384-384
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been studied as an ideal material for field emitters due to the high aspect ratio, excellent electrical property and good mechanical strength. There were many reports on CNT emitters fabricated on rigid substrates, but rare reports about CNT flexible field emitters. Recently, we considered that CNTs can be a good candidate for a flexible field emitter material because of their excellent Young's modulus and elasticity, which could not be achieved with metal tips or semiconducting nanowire tips. In this work, we demonstrated the CNT flexible field emitters fabricated by a simple method and studied the field emission properties of the CNT flexible field emitters under various bending conditions. The flexible field emitters showed stable and uniform emission characteristics. Especially, there is no remarkable change of the field emission properties at the CNT flexible field emitters according to the bending conditions. The CNT flexible field emitters also exhibited a good field emission performance like the low turn-on field and high emission current. Therefore, we suggest that the CNT flexible emitters can be used in many practical applications under different bending conditions.

  • PDF

An inverse approach based on uniform load surface for damage detection in structures

  • Mirzabeigy, Alborz;Madoliat, Reza
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.233-242
    • /
    • 2019
  • In this paper, an inverse approach based on uniform load surface (ULS) is presented for structural damage localization and quantification. The ULS is excellent approximation for deformed configuration of a structure under distributed unit force applied on all degrees of freedom. The ULS make use of natural frequencies and mode shapes of structure and in mathematical point of view is a weighted average of mode shapes. An objective function presented to damage detection is discrepancy between the ULS of monitored structure and numerical model of structure. Solving this objective function to find minimum value yields damage's parameters detection. The teaching-learning based optimization algorithm has been employed to solve inverse problem. The efficiency of present damage detection method is demonstrated through three numerical examples. By comparison between proposed objective function and another objective function which make use of natural frequencies and mode shapes, it is revealed present objective function have faster convergence and is more sensitive to damage. The method has good robustness against measurement noise and could detect damage by using the first few mode shapes. The results indicate that the proposed method is reliable technique to damage detection in structures.