• Title/Summary/Keyword: Gonadotropin-releasing hormone (GnRH)

Search Result 133, Processing Time 0.029 seconds

Expression of Luteinizing Hormone (LH) and Its Receptor Gene in Rat Mammary Gland (흰쥐 유선에서의 Luteinizing Hormone (LH)과 수용체 유전자 발현)

  • 류종순;김재만;이성호
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.231-236
    • /
    • 2000
  • Recent studies have clearly shown that the expression of genes for gonadotropin-releasing hormone (GnRH) and its receptor in the rat reproductive organs including ovary, testis, placenta uterus and mammary gland. Moreover, luteinizing hormone (LH) classically known to be a main target product of GnRH in anterior pituitary has been found in rat gonads. These findings suggested the presence of local circuit composed of GnRH and LH in the rat gonads. The present study was undertaken to elucidate whether the genes for LH and its receptor are expressed in rat mammary gland. Expression of LH and its receptor genes in the rat mammary gland was demonstrated by reverse transcription-polymerase chain reaction (RT-PCR) and specific LH radioimmunoassay (RIA). The LH${\beta}$ transcripts in the mammary gland from cycling rats contained the pituitary type of LH${\beta}$ exons 1~3 encoding the entire LH${\beta}$ polypeptide but lacked the rat testis-specific LH${\beta}$ exon(s). Presence of ${\alpha}$ -subunit transcripts in the rat mammary gland were determined by RT-PCR. The cDNA fragments encoding exons 2~7 of rat LH receptor transcripts were amplified in both rat ovary and mammary gland samples. We could detect the GnRH expression in mammary gland from cycling virgin rats, and this result disagreed with previous report that mammary GnRH expression is occured in lactating rats only. Considerable amounts of immunoreactive LH molecules with good RIA parallelism in standard curve were detected in crude extracts from the rat mammary gland, indicating that the immunoreactive LH materials in the gland might be identical to authentic pituitary LH. To our knowledge, the present study demonstrated for the first time the expression of LH subunits and LH receptor in the rat mammary gland. Our findings suggested that the mammary gland might be the novel source and target of LH and the mammary LH could be act as a local regulator with auto-and/or paracrine manner under the regulation of local GnRH.

  • PDF

The Activity of Proliferating Cell Nuclear Antigen(PCNA) of Uterine Myoma after Treatment with Gonadotropin Releasing Hormone(GnRH) Analogue (자궁근종 환자에서 Gonadotropin Releasing Hormone(GnRH) 유사체 투여 후 자궁근종 세포 증식에 관한 연구)

  • Lee, Byung-Seok;Lee, Bo-Yeon;Park, Ki-Hyun;Cho, Dong-Jae;Lee, Kook;Song, Chan-Ho;Kim, Ho-Keun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.19 no.2
    • /
    • pp.175-179
    • /
    • 1992
  • The factors involved in the initial neoplastic transformation and subsquent growth of uterine fibroid are poorly understood. The reduction in uterine fibroid volume associated with the chronic administration of the mechanisms mediating the decrease in fibroid volume in GnRH-a treated patients are poorly defined. The purpose of this study was to determine the proliferating cell nuclear antigen(PCNA) in fibroid from-women pretreated with GnRH analogue(GnRH-a) compared with controls. Tissue was obtained from 16 premenopausal women with uterine fibroid who received GnRH-a(D-Trp6-GnRH) intramusculary every 28 days for four injections. The mean proliferating index(PI) in patients with uterine fibroids was $2.25{\pm}0.9$, and in controls was $8.82{\pm}1.8$(P<0.001). The proliferating index was not corrleated with the reduction of fibroid volume. In this clinical study, although hypoestrogenism may be the main factor that reduce the volume of fibroid, other factors are also considered to be involved in that process. And the regrowth of uterine fibroid may be affected by increased production of PCNA after stopping GnRH-a.

  • PDF

시상하부 GnRH 뉴런의 신경내분비학적 연구

  • 김경진
    • The Zoological Society Korea : Newsletter
    • /
    • v.16 no.1
    • /
    • pp.17-50
    • /
    • 1999
  • 시상하부에 극히 적은 수로 존재하는 신경분비세포인 성선자극호르몬-방출호르몬(gonadotropin-releasing hormone; GnRH) 뉴런은인간을 포함한 포유동물의 생식과 발생 과정에 있어 중요한 역할을 담당하고 있다. GnRH 뉴런은 배아 발생과정 중에 후판에서 유래하여 시상하부의 여러 영역으로 이동하며, 생후와 사춘기를 거치면서 분화를 계속한다. GnRH 뉴런에서 합성, 분비되는 10개의 아미노산으로 이루어진 작은 신경호르몬인 GnRH는 맥동적으로 분비되어 뇌하수체 성선자극 세포막에 존재하는 GnRH 수용체와 결합한 후 일련의 신호전달과정을 거쳐 성선자극호르몬의 합성과 분비를 제어하게 된다. GnRH의 합성과 분비는 글루탐산, 노르에피네프린, GABA와 같은 각종 신경입력과 스테로이드 호르몬에 의한 액성 피드백 신호에 의해 조절되나 이들의 GnRH 유전자 발현에 미치는 영향은 최근에 연구되고 있는 실정이다. GnRH 뉴런의 분화와 발생에는 다양한 신경영양인자들이 영향을 미치나 그 분자생물학적 기작은 아직 밝혀져 있지 않다. 본 논단에서는 신경호르몬인 GnRH와 그 수용체에 관하여 최근 연구성과를 중심으로 살펴보고자 한다.

  • PDF

Expression of the Second Isoform of Gonadotropin-Releasing Hormone (Chicken GnRH-II Type) in the First Trimester Human Placenta (임신초기 사람의 태반조직에서 GnRH-II mRNA와 Peptide의 발현)

  • Cheon, Kang-Woo;Hong, Sung-Ran;Lee, Hyoung-Song;Kang, Inn-Soo
    • Development and Reproduction
    • /
    • v.5 no.1
    • /
    • pp.81-88
    • /
    • 2001
  • Gonadotropin-releasing hormone (GnRH) has been known to play a role in the regulation of hCG secretion by human placenta. Recently, a gene encoding the second f개m of GnRH (GnRH-II) was identified in human. Herein, we demonstrate that GnRH-II is expressed in human placenta and assess GnRH-II expression by nested RT-PCR and immunohistochemistry in human placenta during the first trimester. We found that two altematively spliced transcripts of GnW-II mRNA were expressed in human placental tissues of first trimester and the shorter variant had a 21-bp deletion in GnRH-associated peptide (GAP). Immunoreactive GnRH-II was localized in both cytotrophoblastic and syncytiotrophoblastic cytoplasm. The immunostaining intensity was stronger in cytotrophoblast. Villous stromal cells also showed GnRH-II immunoreactiyiry. The results of our study report that the second isoform of GnRH (GnRH-II) is expressed in the first trimester human placenta and we suggest that GnRH-II may also play a regulatory role in maintenance of early pregnancy and hCG secretion in human placenta.

  • PDF

Temporal Changes in the Local Expression of Central Hormone-Regulating Factors in Rat Testis

  • Si-On You;Han-Seo Yoon;Hye-Soo Kim;Jin-Soo Park;Sung-Ho Lee
    • Development and Reproduction
    • /
    • v.28 no.1
    • /
    • pp.21-28
    • /
    • 2024
  • Present study aimed to investigate the temporal changes in expression of some reproductive hormones in testis, originally found in hypothalamus and pituitary. Rats were sacrificed on postnatal day 23 (PND23; immature), pubertal (PND53) and PND 81 (young adult). The testicular RNAs were extracted, and semi-quantitative PCRs for gonadotropin-releasing hormone (GnRH), kisspeptin 1 (KiSS1), pituitary adenylate cyclase-activating polypeptide (PACAP), LH subunits and LH receptor were performed. Transcript levels of GnRH and KiSS1 at PND23 were significantly higher than levels of PND53 and PND81 (p<0.001). PACAP mRNA level at PND23 was significantly lower than those of PND53 and PND81 (p<0.001). The mRNA levels of both testis type and pituitary type luteinizing hormone β subunit (tLHβ and pLHβ, respectively) at PND23 were significantly lower than levels of PND53 and PND81 (p<0.001). The mRNA level of glycoprotein hormone common alpha subunit (Cgα) at PND23 was significantly lower than those of PND53 and PND81 (p<0.001). Present study revealed the intratesticular expression of KiSS1 and GnRH showed a very similar trend while the expression of PACAP in the testis showed reversed pattern. The expressions of LHβ subunits (tLHβ and pLHβ) were very low during immature stage then increased significantly during puberty and early adulthood. Our attempt to study the local role(s) of intratesticular factors will be helpful to achieve precise understanding on the testis physiology and pathology.

Reproductive Physiology of Pineal Hormone Melatonin (송과선 호르몬 멜타토닌의 생식 생리학)

  • 최돈찬
    • The Korean Journal of Zoology
    • /
    • v.39 no.4
    • /
    • pp.337-351
    • /
    • 1996
  • Melatonin Is a multifunctional hormone secreted from the pineal gland in the middle of cerebrum and cerebellum. Its synthesis and release reflect photopedod;Photopedod is a yearly predictable ambient factor that most animals utilize as an environmental cue for maximum survival. Hamsters maintaln reproductive activity in summer during which day length exceeds night time. Upon the advent of autumnal equinox they undergo gonadal regression. The photoperiodic effects are prevented by removal of the pineal gland and restored by the timed repiacument of melatonin. The results suggest that melatonin constitutes part of control mechanism whereby environmental information is transduced to neuroendocrine signal responsIble for the functional integrity of the reproductive system. From the studies for the action site of melatonin following the treatment of photopedod or melatonin in the lesion of a spedflc portion of hypothalamus, suprachiasmatic nuclei and pars tuberalis are shown to be a consensus site for melatonIn. The action of melatonin. In the regulation of reproduction is largely unknown. It is mainly due to the lack of acute effect of melatonin on gonadotropin secretion. However, reduction of the gonadotropln release and augmentation of the hypothalamic gonadotropin-releasing hormone (GnRH) content by long-term treatment of melatonln Indicate that constant presence of melatonln may partidpate in the regulation of sexual activity via the GnRH neuronal system. The action mechanism by which melatonin exerts Its effect on GnRH neuron needs to be eluddated. The inability of opiold analogues to affect the reproductive hormones in sexually regressed animals by inhibftory photopedod and melatonin suggests that the opioldergic neuron may be a prime intervening mediator. Recent cloning of melatonin receptor will contribute to investigate its anatomical Identification and the action mechanism of melatonin on target tissues at the molecular level.

  • PDF