• Title/Summary/Keyword: Gonadotropin secretion

Search Result 43, Processing Time 0.015 seconds

Influence of Melatonin on Reproductive Function in Male Golden Hamsters (수컷 골든 햄스터의 생식기능에 미치는 멜라토닌의 영향)

  • Choi, Don-Chan
    • Development and Reproduction
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Golden hamsters show the reproductive activity that is determined by the photoperiod (length of light per day). Photoperiod is an environmental factor that is predictable through an entire year. The hamsters are sexually active in summer during which day length exceeds night time. The critical length is at least 12.5 hours of light in a day where reproductive function is maintained. The information of photoperiod is mediated by the pineal gland because removal of pineal gland blocks the influence of photoperiod on reproductive activity. The hamsters without pineal gland maintain sexual activity and promote it in a situation that suppresses gonadal activity. The pineal gland secretes melatonin that reflects the photoperiod. The appropriate administrations of melatonin into both pineal intact and pinealectomized hamsters lead to a gonadal reression. The results suggest that melatonin constitutes a part of control mechanism whereby environmental information is transduced to neuroendocrine signal respensible for the functional integrity of the reproductive system. Despite of the intense studies, the action site of melatonin is on the whole unknown. It is mainly due to the lack of acute efffct of melatonin on the secretion of reproductive hormones. However, sexually regressed animals display the low levelsof gonadotropins and the augmentation of the hypothalamic gonadotropin-releasing hormone (GnRH) content, implying that the antigonadotropic effects either by photoperiod and/or by the treatment of melatonin are mediated by the GnRH neuronal system. The action mechanism by which melatonin exerts its effect on GnRH neuron needs to be investigated. Recent cloning of melatonin receptor will contribute to examine various and putative potencies of melatonin via its anatomical identification and the action mechanism of melatonin on target tissues at the molecular level.

  • PDF

Regulation of $LH{\beta}$ subunit mRNA by Ovarian Steroid in Ovariectomized Rats (난소제거된 흰쥐에서 난소호르몬에 의한 $LH{\beta}$ subunit의 유전자 발현조절)

  • Kim, Chang-Mee;Park, Deok-Bae;Ryu, Kyung-Za
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.225-235
    • /
    • 1993
  • Pituitary LH release has been known to be regulated by the hypothalamic gonadotropin releasing hormone (GnRH) and the gonadal steroid hormones. In addition, neurotransmitters and neuropeptides are actively involved in the control of LH secretion. The alteration in LH release might reflect changes in biosynthesis and/or posttranslational processing of LH. However, little is known about the mechanism by which biosynthesis of LH subunits is regulated, especially at the level of transcription. In order to investigate if ovarian steroid hormones regulate the LH subunit gene expression, ${\alpha}\;and\;LH{\beta}$ steady state mRNA levels were determined in anterior pituitaries of ovariectomized rats. Serum LH concentrations and pituitary LH concentrations were increased markedly with time after ovariectomy. ${\alpha}\;and\;LH{\beta}$ subunit mRNA levels after ovariectomy were increased in a parallel manner with serum LH concentrations and pituitary LH contents, the rise in $LH{\beta}$ subunit mRNA levels being more prominent than the rise in ${\alpha}\;subunit$ mRNA. ${\alpha}\;and\;LH{\beta}$ subunit mRNA levels in ovariectomized rats were negatively regulated by the continuous treatment of ovarian steriod hormones for $1{\sim}4\;days$ and $LH{\beta}\;subunit$ mRNA seemed to be more sensitive to negative feedback of estradiol than progesterone. Treatment of estrogen antagonist, LY117018 or progesterone antagonist, RU486 significantly restroed LH subunit mRNA levels as well as LH release which were suppressed by estradiol or progesterone treatment. These results suggest that ovarian steroids negatively regulate the LH synthesis at the pretranslational level by modulating the steady state levels of ${\alpha}\;and\;LH{\beta}\;subunit$ mRNA and $LH{\beta}\;subunit$ mRNA seemed to be more sensitive to negative feedback action of estradiol than progesterone.

  • PDF

Effects of Ovarian Function on the Hypophyseal Gonadotropin Secretion in Rats (흰쥐의 난소기능(卵巢機能)이 하수체(下垂體)의 성선(性腺) 날극(剌戟)호르몬 분비(分泌)에 미치는 영향(影響))

  • Seo, Kil Woong;Kim, Chong Sup;Park, Chang Sik;Lee, Kyu Seung
    • Korean Journal of Agricultural Science
    • /
    • v.16 no.2
    • /
    • pp.169-178
    • /
    • 1989
  • The study was carried out to elucidate the feedback mechanism on the hypothalamo-hypophyseal system from the functional changes of ovary in female rats. One hundred and forty-four mature female rats were lloted into the three groups; ovariectoimzed group, estradiol treated group and intact control group. The varies of 48 heads of rat were completely removed. Forty eight heads of rat were administered with $200{\mu}g$ of estradiol benzoate every 48 hours. Serum FSH, LH and prolactin levels were determined with radioimmunoassay method at 3,6,12,24 ours, and 5,10, and 15days after treatment. The rats were necropsied to measure the weights of hypophysis and to examin the histological changes in the organs. The results obtained were as follows: The weights of hypophysis were increased after ovariectomy and decreased after estradiol injection. The differences in hypophysis weights were significant between the group from 5 days after treatment. The histological changes in hypophysis were appeared from 5th day after ovariectomy. Proliferation and hypertrophy began to occur in basophilic from 10th day after ovariectomy, chromophobes were slightly hypertrophied and acidophilic cells were atrophied. In estradiol injected rats the histological findings were appeard to be contrary to those of ovariectomized rats. Serum FSH levels significantly changed after ovariectomy and estradiol injection and were higher in both the treated groups than in the intact control group. Within 18 hours after treatment the level was the highest in ovariectomized group, and thereafter the highest level was found in estradiol treated gorup. In ovariectomized rats the levels were rapidly increased 3 hours after treatment and maximum levels were found 18 hours after treatment. In estradiol treated rats the levels started to increase 18 hours after treatment and reached maximum levels 24 hours treatment. 4. Serum LH levels started to increase 3 hours after ovariectomy and estradiol injection and reached maximum levels 12 hours after ovariectomy and 24 hours after estradiol injection. There were significant differences in LH levels between the groups in each observation time. Up to 18 hours after treatment levels were higher in ovariectomized rats than in estradiol treated rats. but thereafter the levels were higher in estradiol treated rats than in ovariectomized rats. The multiple range test showed that a significant difference in LH levels was not found between ovariectomized group and estradiol treated group 18 hours and 5 days after treatment. 5. Serum prolactin levels were significantly changed after ovariectomy and estradiol injection. The levels were lower in ovariectomized rats than in intact control rats.

  • PDF