• Title/Summary/Keyword: Gonadotropin releasing

Search Result 201, Processing Time 0.021 seconds

Effect of the Gonadotropin-Releasing Hormone (GnRH) on Induction of Maturation in White-Spotted Bambooshark Chiloscyllium plagiosum (성 성숙 자극호르몬방출호르몬(GnRH) 투여를 이용한 백점얼룩상어 (Chiloscyllium plagiosum)의 성 성숙 유도에 관한 연구)

  • Ki-hyuk Kim;Ji-min Jeon;Hye-na Moon;Jin Namgung;In-kyu Yeo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.3
    • /
    • pp.309-314
    • /
    • 2023
  • Shark populations are constantly decreasing owing to environmental destruction and overfishing; thus, sharks are now at risk of extinction, with 30.5% of species classified as endangered on the International Union for Conservation of Nature's Red List. Sharks are apex predators and keystone species in balancing the marine food chain; their extinction would create an imbalance in the entire marine ecosystem. Assisted reproductive technology is a last resort for protecting animals facing extinction. Here, as a proactive effort toward building a hormone-induced artificial insemination protocol for endangered wild sharks, we identified the possibility of germ cell maturation by administration of GnRH, a commercially produced synthetic salmon gonadotropin-releasing hormone, and calculated its optimum dosage and injection timing. The experiment was conducted on one shark species, Chiloscyllium plagiosum. Injections were administered in 24 h intervals to C. plagiosum females, and 0.2 mL/kg+0.2 mL/kg were the optimal doses. These doses effectively induced maturation and, and ovulation, and oocyte release. Our results confirm that GnRH is a suitable tool for shark hormone-induced artificial insemination and indicate that this method may facilitate the conservation of endangered shark species.

Growth promoting effect of combined gonadotropin releasing hormone analogue and growth hormone therapy in early pubertal girls with predicted low adult heights (예측성인신장이 작은 조기사춘기 여아에서 성선자극호르몬 방출호르몬 효능약제와 성장호르몬 병합치료의 성장획득 효과)

  • Hong, Eun-Jeong;Han, Heon-Seok
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.7
    • /
    • pp.678-685
    • /
    • 2007
  • Purpose : Recent reports pointed out that gonadotropin releasing hormone analogue (GnRHa) therapy alone is not so promising for improving adult height in precocious puberty. So, that we studied the growth promoting effect of combined therapy with GnRHa and growth hormone (GH) in early pubertal girls. Methods : Twenty three early pubertal girls ($9.73{\pm}1.59yr$) with predicted adult heights (PAH) below-2 standard deviation score (SDS) were included. They were divided into two groups as follows; Group I before menarche (n=19) and Group II after menarche (n=4). After combined therapy, various growth parameters were compared between two groups and between the before and after therapy. Results : Between the two groups before therapy, chronologic age (CA), growth velocity (GV), body mass index (BMI), target height (TH), PAH and serum insulin-like growth factor binding protein-3 were not different, but BA, height and difference between bone age (BA) and CA were significantly higher and insulin-like growth factor-1 (IGF-1) was marginally higher in group II. After therapy, BA still remained higher in group II, but other parameters were not different. In both groups, after therapy, the difference between BA and CA, the ratio of BA over CA, and GV were significantly decreased, but PAH, height SDS and BMI were significantly increased. Regarding IGF-1 level, a significant increase was noted in group I, but not in group II. Conclusion : With combined therapy of GnRHa and GH, PAH in early pubertal girls might be improved significantly and even approach TH. Among them, those who were before menarche might have greater potential for the height gain than those after menarche in view of IGF-1 changes during therapy.

Changes in Sex Hormone-related Gene Expression in Zebrafish Dario rerio by the Administration of Sexual Maturation Inhibitors (성 성숙 억제 물질 투여에 따른 Zebrafish Dario rerio의 성호르몬 관련 유전자 발현 변화)

  • Kim, Ki-hyuk;Moon, Hye-na;Yeo, In-kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.1
    • /
    • pp.17-22
    • /
    • 2022
  • Successful reproduction in vertebrates necessitates complex interactions along the brain-pituitary-gonad axis, it is determined by gonadotropin releasing hormone produced in the hypothalamus of the brain, gonadotropin synthesized in the pituitary gland, and sex hormone secreted by the gonads. The goal of this study was to secure and test technology for controlling (inhibiting) sexual maturation hormones such as maturation hormones through hormone regulation. We studied the effect on sexual maturation of zebrafish Danio rerio by tamoxifen, anastrozole, exemestane and dopamine 4 kinds of sexual maturation inhibitors to feed and after administration. As a result, 4 kinds of sexual maturation inducing substances were mixed with zebrafish feed, it could be concluded that all of them were effective in inhibiting sexual maturation by reducing mRNA levels of genetic materials related to sexual maturation.

Association of GRIA1 polymorphisms with ovarian response to human menopausal gonadotropin in Iranian women

  • Golestanpour, Hossein;Javadi, Gholamreza;Sheikhha, Mohammad Hasan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.3
    • /
    • pp.207-212
    • /
    • 2020
  • Objective: Glutamate ionotropic receptor AMPA type subunit 1 (GRIA1) is a subunit of a ligand-gated ion channel that regulates the secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) by controlling the release of gonadotropin-releasing hormone. Few studies have investigated the association between the GRIA1 gene and human infertility. This study evaluated the association of the GRIA1 rs548294 C > T and rs2195450 G > A polymorphisms with the ovarian response to human menopausal gonadotropin (HMG) in Iranian women. Methods: One hundred women with histories of at least 1 year of infertility were included. On the second day of menstruation, patients were injected with HMG; on the third day, blood samples were collected. After hormonal analysis, the GRIA1 rs548294 C > T and rs2195450 G > A genotypes of samples were identified via the restriction fragment length polymorphism method, and on day 9, the number of follicles was assessed via ultrasound. Results: For the GRIA1 rs548294 C > T and rs2195450 G > A single nucleotide polymorphisms, the subjects with CT and GG genotypes, respectively, displayed the highest mean FSH level, LH level, and number of follicles on day 9 of the menstrual cycle (p< 0.05). Significant positive correlations were observed between LH and FSH (p< 0.01), LH and follicle count (p< 0.01), FSH and age (p< 0.05), follicle count and age (p= 0.048), and FSH and follicle count (p< 0.01). Conclusion: This study showed a significant relationship between GRIA1 polymorphisms and ovarian response to the induction of ovulation. Therefore, determining patients' GRIA1 genotype may be useful for improving treatment and prescribing suitable doses of ovulation-stimulating drugs.

Dopaminergic Regulation of Gonadotropin-II Secretion in Testosterone-treated Precocious Male and Immature Rainbow Trout Oncorhynchus mykiss

  • Kim, Dae-Jung;Aida, Katsumi
    • Animal cells and systems
    • /
    • v.4 no.3
    • /
    • pp.287-292
    • /
    • 2000
  • The present work examined the role of gonadotropin-releasing hormone (GnRH) and dopaminergic drugs on the secretion of maturational gonadotropin (GTH II) in relation to testosterone m treatment. This study provides evidence that the plasma GTH II levels are increased by T treatment in precocious males, but not in the immature animal. In addition, GnRH analogue (GnRHa) alone significantly increased the plasma GTH II secretion in immature rainbow trout treated with T, as well as in T-treated and T-untreated precocious males. However, injection with either dopamine (DA) or domperidone (DOM; DA D2 receptor antagonist) alone did not alter the basal plasma GTH 11 secretion in all experimental groups. The secretion of GTH II in the T-treated precocious males was remarkably influenced by GnRHa or combination of dopaminergic drugs. Notably, the effects of dopaminergic drugs on GnRHa-induced GTH II secretion w8s prolonged by T in precocious males. In T-treated immature animals, GnRHa-induced GTH II secretion was Increased only by a dose DOM (10$\mu$g/g body n) but not by higher dose DOM (100$\mu$/g body wt). In the T-untreated immature rainbow trout, however, plasma GTH 11 secretion was not influenced by the same treatments. Therefore, these results indicate that DA may be acting indirectly by blocking the effect of GnRH on GTH II secretion in vivo. T may act to modulate the relative contribution by the stimulatory (GnRH) and inhibitory (DA) neuroendocrine factors, which would ultimately determine the pattern of GTH II secretion.

  • PDF

Electron Microscopic Ultrastructural Changes of Leiomyoma after Treatment with D-Trp6-Luteinizing Hormone Releasing Hormone (자궁근종시 LHRH agonist (D-Trp6-LHRH) 치료에 따른 근종세포내 미세구조의 변화)

  • Park, K.H.;Shin, M.C.;Lee, B.Y.;Lee, B.S.;Song, C.H.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.18 no.2
    • /
    • pp.189-196
    • /
    • 1991
  • Long-term administration of luteinizing hormone-releasing hormone(LHRH) agonists, through a process of pituitary desensitization and down-regulation of receptors, inhibits the secretion of gonadotropin and sex-steroids and induces a reversible suppression of gonadal activity. This approach can be used as an effective endocrine therapy for some hormone-dependent tumors. We have used D-Trp6-LHRH, a long acting LHRH agonist, for the treatment of eleven patients with uterine leiomyomas, thereafter myomectomy was performed in seven cases and observed the ultrastructural changes of leiomyoma with an electron microscope. The use of LHRH agonist may be effective in reducing the size of a myoma considerably by primarily inducing medical hypophysectomy and would allow easier surgical removal. Electron microscopic findings of myoma cells after the use of LHRH agonist included the following: loss of cristae and swelling nuclear chromatin, perinuclear vacuolation in cytoplasm. Bone mineral density was slightly decreased, however, the difference was not statistically significant.

  • PDF

Neuroanatomical Localization of Cells Containing Gonadotropin Releasing Hormone mRNA in the Brain of Frog, Rana dvbowskii, by in situ Hybridization (In situ hybridization법에 의한 북방산개구리 뇌에서 GnRH mRNA를 함유한 세포의 분포 연구)

  • 최완성;김정우
    • The Korean Journal of Zoology
    • /
    • v.37 no.3
    • /
    • pp.304-310
    • /
    • 1994
  • Using in situ hybridization, we have mapped the anatomical localization of perikarya containing myNA that codes for sonadotropin releasing hormone (GnRH) in the brains of female frogs, R. dybowskii. DNA olisomers, with sequences complementary to the GnRH portion of pro-GnRH myNA sequence, were synthesized and hybridized to paraformaldehvde-fixed, sagittal sections of the whole brain stem. The distribution of the GnRH mRNA containing cell bodies was similar to that described for GnRH peptide by immunohistochemistrv. That is, cells containing GnRH mRNA were observed in the medial septal area, anterior preoptic area, ventromedial hvpothalamus and infundibular regions. However, another cell groups which contains GnRH mRNAs were also detected by in situ hybridization in the bed nucleus of hippocampal commissure, preoptic area, nucleus infundibularis dorsalis, mesencephalic nuclei and intermediolateral cell column of spinal cord areas. These results demonstrate the feasibility of using in situ hybridization as a strategy to study the distribution of GnRH neurons and the detection of GnRH gene expression in the vertebrates.

  • PDF

Effect of Gonadotropin on the Expression of GnRH and GnRH mRNA in Rat Ovary (성선자극호르몬이 흰쥐 난소의 GnRH와 GnRH mRNA의 발현에 미치는 영향)

  • Paik, Won-Young;Chung, Pa-Jin;Park, Shin-Keun;Kim, Wan-Young;Lee, Jong-Hak;Kim, Jong-Hwa;Kim, Myeong-Ok;Choi, Wan-Sung
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.21 no.1
    • /
    • pp.121-130
    • /
    • 1994
  • Expression of gonadotropin releasing hormone(GnRH) has been described in the rat ovary. It remains, however, unkown whether GnRH is synthesized as a prohormone. Therefore, this study was performed to verify the expression of pro-GnRH by in situ hybridization and further to investigate the effect of gonadotropin on GnRH or GnRH mRNA in rat ovary by immunohistochemical and in situ hybridization techniques. Adult female Sprague-Dawely rats were used and the estrous cycle was synchronized by intraperitoneal injection of pregnant mare's serum gonadotropin(PMSG). Ovaries were fixed with 4% paraformaldehyde and embedded with G.C.T. compound and cut by cryostat. For immunohistochemistry, avidin-biotin peroxidase complex(ABS) method was employed and for in situ hybridization, $^{35}S$-end labeled oligonucleotide was used and followed by autoradiography. By in situ hybridization using GnRH oligomer and GAP(GnRH associated protein) oligomer, GnRH mRNA and GAP mRNA were co-localized in the fullicular cells, luteal cells, interstitial cells and theca cells. GnRH or GnRH mRNA signals in the ovary increased by human chorionic gonadotropin(hCG) injection. At the 3 and 6 hrs after hCG injection, the number of GnRH and GnRH mRNA containing cells increased rapidly and the density of GnRH and GnRH mRHA culminated at 9 hrs after heG injection. With the follicular development, the high expression of GnRH and GnRH mRNA was also observed within the follicles. After ovulation, the density of GnRH or GnRH mRNA decreased in the follicles but increased in the corpus lutea.

  • PDF

Effect of Vinclozolin Administration on the Gene Expressions in Hypothalamus-Pituitary Axis of Immature Female Rats (미성숙 암컷 흰쥐 시상하부-뇌하수체 축 상의 유전자 발현에 미치는 Vinclozolin 투여 효과)

  • Lee, Woo-Cheol;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.97-105
    • /
    • 2008
  • Vinclozolin (VCZ) is a systemic fungicide commonly used in fruits, vegetables and the wine industry. VCZ and its metabolites, butenoic acid (M1) and enanilide (M2) derivatives, act as anti-androgens through actions on the androgen receptor. Although there is growing body of evidence that VCZ's action as an endocrine disrupting chemical (EDC) in male reproductive physiology and pathphysiology, no evidence on the VCZ's EDC action in female is available yet. Previously we found that the prepubertal VCZ exposures could effectively delay the onset of puberty in female rats, suggesting the postponed or weakened activities of hypothalamus-pituitary-ovary (H-P-O) reproductive hormonal axis. The present study was performed to examine whether the VCZ administration affects the transcriptional activities of reproductive hormone-related genes in the same animal model. VCZ (10 mg/kg/day) was administered daily from postnatal day 21 (PND 21) through the day when the first vaginal opening (V.O.) was observed. To determine the transcriptional changes of reproductive hormone-related genes in hypothalamus and pituitary, total RNAs were extracted and applied to the semiquantitative reverse transcription polymerase chain reaction (RT-PCR). As a result, treatment with VCZ significantly lowered the transcriptional activity of nitric oxide synthase-2 (NOS-2) which is known to adjust gonadotropin-releasing hormone (GnRH) secretion in the hypothalamus (p<0.01). Similarly, the mRNA levels of KiSS-1, G protein-coupled receptor 54 (GPR54) and GnRH were significantly decreased in hypothalamus (p<0.01) from VCZ-treated group. As expected, the transcriptional activities of luteinizing hormone-${\beta}$ (LH-${\beta}$) and follicle stimulating hormone-${\beta}$ (FSH-${\beta}$) in the anterior pituitary from VCZ-treated group were also significantly lower than those from the control group. The present study indicates that(i) the inhibitory effect of VCZ exposure on the onset of puberty in immature female rats could be derived from the reduced transcriptional activities of gonadotropin subunits and their upstream modulators such as GnRH and KiSS-1 in hypothalamus-pituitary neuroendocrine axis, and (ii) these inhibitory effects could be mediated by NO signaling pathway.

  • PDF

The Consequences of Mutations in the Reproductive Endocrine System

  • Choi, Donchan
    • Development and Reproduction
    • /
    • v.16 no.4
    • /
    • pp.235-251
    • /
    • 2012
  • The reproductive activity in male mammals is well known to be regulated by the hypothalamus-pituitary-gonad axis. The hypothalamic neurons secreting gonadotropin releasing hormone (GnRH) govern the reproductive neuroendocrine system by integrating all the exogenous information impinging on themselves. The GnRH synthesized and released from the hypothalamus arrives at the anterior pituitary through the portal vessels, provoking the production of the gonadotropins(follicle-stimulating hormone (FSH) and luteinizing hormone (LH)) at the same time. The gonadotropins affect the gonads to promote spermatogenesis and to secret testosterone. Testosterone acts on the GnRH neurons by a feedback loop through the circulatory system, resulting in the balance of all the hormones by regulating reproductive activities. These hormones exert their effects by acting on their own receptors, which are included in the signal transduction pathways as well. Unexpected aberrants are arised during this course of action of each hormone. This review summarizes these abnormal phenomena, including various mutations of molecules and their actions related to the reproductive function.