• Title/Summary/Keyword: Gonadotrope

Search Result 5, Processing Time 0.02 seconds

Rat Gonadotropes and Somatotropes Express Growth Hormone Releasing Hormone Gene in the Pituitary (흰쥐 뇌하수체 Gonadotropes와 Somatotropes에서의 Growth Hormone Releasing Hormone 유전자 발현)

  • 이성호
    • Development and Reproduction
    • /
    • v.2 no.2
    • /
    • pp.189-196
    • /
    • 1998
  • Several lines of evidence indicate that some neuropeptides classically associated hypothalamus have been found in pituitary gland, suggesting the existence of local regulation of pituitary function. Among the hypothalamic releasing hormones, genes for TRH and GnRH are expressed in the rat anterior pituitary gland. The present study was carried out to investigate the expression of the GHRH gene in rat anterior pituitary and the pituitary-derived cell lines. The presence of GHRH transcripts in pituitary tissue was shown by 3'rapid amplification of cDNA end (3'-RACE) analysis. In reverse transcription-polymerase chain reaction (RT-PCR) study, GHRH cDNA fragments were amplified from two pituitary-derived cell lines, $\alpha$T3 cells originated from mouse gonadotrope and GH3 cells from rat somatolactotrope. Immunoreactive GHRH was detected in large and medium-sized pituitary cells by immunocytochemistry. Significant amounts of GHRH-like molecules were found in the GH3 cell extracts. In RNase protection assay, the level of pituitary GHRH mRNA was augmented by ovariectomy. These results demonstrate that GHRH gene is expressed in the rat gonadotropes and somatotropes, and suggest that the pituitary GHRH could be participated in the paracrine and/or autocrine regulation of cell proliferation, as well as promoting growth hormone secretion.

  • PDF

Effect of Growth Hormone Releasing Hormone on the Proliferation of Cultured Cells Derived from Rat Anterior Pituitary Gland (배양중인 흰쥐 뇌하수체 전엽 세포의 증식에 미치는 Growth Hormone Releasing Hormone (GHRH)의 영향)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.237-242
    • /
    • 2000
  • Growth hormone releasing hormone (GHRH), the major hypothalamic stimulus of GH secretion from the anterior pituitary gland, has been found to be present in several extrahypothalamic sites including placenta testis, ovary and anterior pituitary gland. The present study was performed to elucidate the role of pituitary GHRH on proliferation of cells derived from rat anterior pituitary gland. The GHRH content of pituitary tissue, cultured pituitary cells, and the conditioned media was evaluated by radioimmunoassay (RIA). Primary cultures of pituitary cells derived from adult rats were prepared by enzymatic dispersion. Significant amounts of GHRH-like molecules were detected in both pituitary tissue and cell cultures by GHRH RIA. Competition curves with increasing amounts of tissue extracts and conditioned media were parallel with those of standard peptide, indicating that the pituitary GHRH-like material is similar to authentic GHRH. To analyze specific cell types responsible for producing GHRH in anteroior pituitary, cell fractionation technique combined with GHRH RIA was performed. In cell fractionation experiment, the highest level of GHRH content was found in gonadotrope enriched-fraction and followed by somatotrope-, lactotrope- and thyrotrope-fraction. Treatment of pituitary cells with GHRH resulted in a dose-dependent increase in [$^3$H] thymidine incorporation. The mitogenic effect of GHRH could be mediated by typical oncogenic activation since the GHRH induced transient increase in c-fos mRNA levels with peak response at 30 minutes. The present study demonstrated that i) the pituitary GHRH expressed in the rat anterior pituitary gland can be secreted, ii) among the various cell types, gonadotropes and somatotorpes are the major GHRH source, and iii) the GHRH treatment increased the [$^3$H] thymidine incorporation and c-fos transcriptional activity in the pituitary cell culture. These findings suggested that GHRH could participated in the paracrine and/or autocrine regulation of cell proliferation, as well as promoting growth hormone secretion.

  • PDF

Molecular Cloning of Estrogen Receptor $\alpha$ in the Masu Salmon, Oncorhynchus masou

  • Sohn, Young Chang
    • Journal of Aquaculture
    • /
    • v.17 no.1
    • /
    • pp.62-68
    • /
    • 2004
  • A cDNA encoding the masu salmon, Oncorhynchus masou, estrogen receptor $\alpha$ (msER$\alpha$) was cloned from the pituitary gland by polymerase chain reaction (PCR). This cDNA contains an open reading frame encoding 513 amino acid residues, and the calculated molecular weight of this protein is about 56,430 Dalton. The amino acid sequences of the DNA binding and ligand binding domains of msER$\alpha$ showed high homology to those of other fish species (84-100%). Reverse transcription PCR analysis showed that the mRNA level of msER$\alpha$ in the pituitary was slightly higher in estradiol-17$\beta$(E2) injected masu salmon than that of control fish. To test the biological activity of msER$\alpha$, the cDNA was ligated to a mammalian expression vector and transfected into a gonadotrope-derived cell line, L$\beta$T2, with a reporter plasmid including estrogen responsive element. Expression of the reporter protein, luciferase, was E2 and msER$\alpha$-dependent. The masu salmon ER$\alpha$ is structurally conserved among teleost species and functions as a transcriptional activator in the pituitary cells.

Neuroendocrine Control of Pituitary Gonadotropin Release (뇌하수체(腦下垂體) 성선자극(性腺刺戟)호르몬 분비(分泌)의 신경내분비적(神經內分泌的) 조절(調節))

  • Ryu, Kyung-Za
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.7 no.1_2
    • /
    • pp.3-10
    • /
    • 1980
  • Pituitary gonadotropes, as target cells, exhibit cyclic changes in terms of LH and FSH release in synchrony with the estradiol levels. The ultimate release is determined by the relative size of the two pools of gonadotropins, which is regulated by the two controllers: LH-RH and estradiol. LH-RH appears to serve as a primary drive on the gonadotrope, stimulating gonadotropin synthesis, storage, and release. Estradiol amplifies the action of LH-RH and induces the development of a self-priming effect of LH-RH except that it impedes LH-RH mediated gonadotropin release. Negative and positive feedback action of estradiol is revealed to operate by different mechanisms. The pituitary capacity increases severalfold from early to late follicular phase, which is considered to be prerequisite for the development of mid-cycle surge. CNS-hypothalamic dopamine, norepinephrine, and prostaglandins, as well as LH-RH, are involved in the negative and positive feedback effects of estradiol. The possible mechanisms in the triggering of LH-RH release for the initiation of midcycle LH-RH surge are considered.

  • PDF