• Title/Summary/Keyword: Golf Putting

Search Result 77, Processing Time 0.022 seconds

The Effect of Foliar Application to Improve Putting Green Performance (벤트그래스 그린 관리를 위한 엽면 시비의 효과)

  • Hong, Beom-Seok;Tae, Hyun-Sook;Oh, Sang-Hun;Cho, Yong-Sup
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.94-99
    • /
    • 2011
  • This study was performed to investigate the effect of foliar feeding as the fertilization on creeping benrgrass green. Research results have showed that the visual quality of bentgrass as well as shoot density and chlorophyll index dramatically improved after foliar feeding. Shoot density of bent grass in foliar based fertilization was 2.8 ea/$cm^2$ higher than that of the liquid based fertilization during the experiment period, moreover that the foliar feeding is more effective to alleviate shoot density during the rainy season in summer. Results showed that foliar feeding was key role to achieve the stable visual quality, chlorophyll index and maintained Normalized Difference Vegetation Index (NDVI) throughout the year in addition to get fast recovery after aeration and dry spot. These were consistent with the previous research of foliar feeding which directly provided nutrient to the turfgrass leaf thus increased turfgrass growth within a short time. It is projected to be a especially adequate management program during the hot summer season in which the nutrition feeding is low. However, root growth was no significant difference between foliar based fertilization and liquid based fertilization. Golf Course managers also should consider about the number of frequent fertilizing. Lastly, it was no big change in chemical property by soil foliar based fertilization which is meaning of preventing the soil salinization, meanwhile, it is prone to reach the nutrient deficiency. It hopes to be settled as the general fertilization in golf course of Korea, since there are many advantages of foliar based fertilization program. It is suggested to study more practical process of foliar feeding through the further research.

Development of Antagonistic Microorganism for Biological Control of Pythium Blight of Turfgrass (잔디 피시움마름병(Pythium blight)의 생물학적 방제를 위한 길항 미생물의 선발과 효력 검정)

  • Jung, Woo-Chul;Shin, Taek-Su;Do, Ki-Suk;Kim, Won-Kuk;Lee, Jae-Ho;Choi, Ki-Hyun
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.260-266
    • /
    • 2006
  • Pythium blight caused by Pythium spp. is one of major diseases in putting green of golf course. In this study, microorganisms which are anatgonistic to Pythium aphanidermatum, a pathogen of pythium blight, were selected primary through in vitro tests, dual culture method and triple layer agar diffusion method. In vivo test against pythium blight were conducted to select the best candidate biocontrol microorganism by pot experiment in a plastic house. Bacillus subtilis GB-0365 was finally selected as a biocontrol agent against pythium blight. Relative Performance Indies(RPI) was used as a criterion of selecting potential biocontrol agent. B. subtilis GB-0365 showed resistance to major synthetic agrochemicals used in golf course. Alternative application of synthetic agrochemicals and B. subtilis GB-0365 was most effective to successfully contol pythium blight. B. subtilis GB-0365 suppressed the development of pythium bight of bentgrass by 56.4% as compared to non-treated control and its disease control efficacy was 60.9% of a synthetic fungicide Oxapro(WP) efficacy. B. subtilis GB-0365 has a potential to be a biocontrol agent for control of pythium blight.

First Report of Curvularia Leaf Blight Caused by Curvularia trifolii on Creeping Bentgrass in Korea (Curvularia trifolii에 의한 크리핑벤트그래스 잎마름병 발생)

  • Sung, Chang-Hyun;Koo, Jun-Hak;Kim, Jung-Ho;Yoon, Jung-Ho;Lee, Jung-Han;Shim, Kyu-Yul;Kwak, Youn-Sig;Chang, Seog-Won
    • Weed & Turfgrass Science
    • /
    • v.5 no.2
    • /
    • pp.101-104
    • /
    • 2016
  • Curvularia leaf blight of creeping bentgrass (Agrostis stolonifera) putting green by caused Curvularia trifolii was observed in Hapcheon, Korea. In July to September 2014, curvularia leaf blight developed on leaf blades of creeping bentgrass as small water-soaked lesions that subsequently turned into dark-colored, necrotic spots. The spots were expanded and became gray, grayish-brown, or light brown, circular to oblong lesions with purple to dark brown borders that often were surrounded by a yellow halo. The necrotic lesions coalesced, became irregular in shape and caused tip or complete blighting of the leaves. Blighted leaf blades appeared grayish-white to tan. The fungus was identified by morphological characters and 16S rDNA sequencing as C. trifolii. Conidia of the pathogen were short, with predominantly 3-septa, straight or often curved, with end cells frequently paler than intermediate cells. Size of the 3-septate conidia in culture are $26{\sim}28{\times}11{\sim}12{\mu}m$. Pathogenicity of the fungus was proved by artificial inoculation on the host. This is the first report of C. trifolii causing leaf blight on creeping bentgrass in Korea.

Development of SCAR markers in Creeping bentgrass(Agrostis palustrics Huds.) cultivars (Creeping bentgrass(Agrostis palustrics Huds.) 품종별 SCAR markers 개발)

  • Jang, Duk-Hwan;Jung, Seung-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.307-316
    • /
    • 2009
  • Creeping bentgrass (Agrostis palustrics Huds.) is cool season turfgrasse that is used for putting green in golf course. Creeping bentgrass cultivars are difficult to distinguish with the same species because of similar morphological characters and low level of genetic diversity. The SCAR markers using the specific DNA can be useful for differentiating between creeping bentgrass cultivars. Five RAPD primers were used for specific band detection among creeping bentgrass cultivars, penncross, penn A-4, crenshaw, L-93, CY-2, T-1. The pairs of SCAR primers for six cultivers were designed by the specific sequences of the bands that amplified by RAPD. Three of the six SCAR primers could not make the use as SCAR primers because the specific false bands were detected in all cultivars. The remaining pairs of SCAR primer, CY850F/R, T700F/R, L2900F/R, amplified the specific band at expected size for three cultivars, CY-2, T-1, L-93, respectively. The CY850F/R primer amplified a band of 850bp in CY-2 cultivar, the T700F/R primer amplified a band of 700bp in T-1 cultivar, and the L2900F/R primer amplified a band of 2.9kb in L-93 cultivar. In this study we developed the SCAR markers to identify and distinguish the inerseeded creeping bentgrass cultivars in a golf course green.

Seed Dormancy and Germination Characteristics of Annual Bluegrass (Poa annua L.) (새포아풀(Poa annua sp.)의 종자휴면과 발아특성)

  • 김태준;송재은;최정섭;조광연
    • Asian Journal of Turfgrass Science
    • /
    • v.15 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • Two types of annual bluegrass have been reported, and those consist of annual type (Poa annua ssp. annua) and perennial type (Poa annua ssp. reptans). As a weed, annual bluegrasses are commonly found in putting greens and fairways in many golf courses. Due to its strong competitiveness such as tremendous seed reproduction rate a year, prostrate growth habit, and no herbicide availability, annual bluegrasses have been considered as one of the most hard-to-control weeds in turf management systems. A growth chamber study was conducted to determine seed dormancy and to understand seed germination characteristics of annual bluegrass (Poa annua ssp. annua). Freshly harvested seeds showed 80 and 55% germination at 30 and $35^{\circ}C$, respectively, indicating that the optimum temperature of annual bluegrass is $30^{\circ}C$. However, the seed germination occurred only under light condition at any given temperature. This result demonstrated that light is prerequisite for the seed germination, and no primary dormancy of annual bluegrass seed exists. Secondary seed dormancy induced by unfavorable temperatures and dark condition was broken through 4 to 6 wk-storage at $4^{\circ}C$ with moisture, and the stored seeds germinated at $20^{\circ}C$ even under the dark. In red and far-red light trial, fresh seeds resulted in 40% germination under red while no seed germination occurred under far-red light condition, indicating that phytochrome Pr and Pfr could be related to annual bluegrass seed germination. When the far-red light replaced the red the germination was recovered, but this reversibility did not reach to the germination level under the red light only. This result implied that other lights than red and far-red would play an important role on seed germination of annual bluegrass.

  • PDF

Development of Antagonistic Microorganism for Biological Control of Dollar Spot of Turfgrass (잔디 동전마름병의 생물학적 방제를 위한 길항 미생물의 선발과 효력 검정)

  • Shim, Taek-Su;Jung, Woo-Cheol;Do, Ki-Seok;Shim, Gyu-Yul;Lee, Jae-Ho;Choi, Kee-Hyun
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.2
    • /
    • pp.191-201
    • /
    • 2006
  • Dollar spot caused by Sclerotinia homeocarpa is one of major diseases in putting greens. Microorganisms antagonistic to S. homeocarpa, a pathogen of dollar spot, were primarily screened through in vitro tests, including dual culture method and triple layer agar diffusion method. In vivo tests were also conducted to select the best candidate for a biocontrol microorganism, using pot experiment. Bacillus subtilis EW42-1 and Trichoderma harziaum GBF-0208 were finally selected as biocontrol agents against dollar spot. Relative Performance Index(RPI) was used as a criterion of selecting potential biocontrol agents. B. subtilis EW42-1 and T. harzianum GBF-0208 showed resistance to several agrochemicals mainly used in a golf course. B. subtilis EW42-1 and T. harzianum GBF-0208 suppressed effectively the disease progress of dollar spot like synthetic fungicide tebuconazole in the nursery where dollar spot had seriously occurred. B. subtilis EW42-1 and T. harzianum GBF-0208 have a potential to be biocontrol agents for the control of dollar spot.

Effects of Liquid Fertilizer Produced from Fermented Clippings for Creeping Bentgrass Growth (Creeping Bentgrass의 생육을 위한 예지물 발효 액상비료의 효과)

  • Kim, Sang-Jun;Kim, Do-Whan;Lee, Sang-Kook
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.202-207
    • /
    • 2011
  • Organic fertilizers are divided into natural organic and synthetic organics. The benefits of natural organic fertilizer were reported from the previous researches. However, the limited research results about clippings as a source of natural organic fertilizers were reported. The objective of the research to investigate effects of liquid fertilizer produced from fermented clippings for creeping bentgrass growth. Liquid fertilizer (LF) produced was used for the research to be compared with Urea and two natural organic fertilizers of different source (NO-1 and NO-2). Creeping bentgrass (Agrostis stolonifera L., L-93) was used for the study. Turfgrass quality was measured by visual evaluation every two weeks from June to October, 2011 using a scale of 1 to 9 (1=worst, 6=acceptable, and 9=best). Turfgrass disease damage was measured by percent of area damaged when a turfgrass disease occurred. LF produced lower damage than NO and urea when temperature was high. Although NO-2 produced the highest or equal to the highest turfgrass quality in June and October, LF had the highest or equal to the highest quality from July to September.