• 제목/요약/키워드: Gold-nanoparticles

검색결과 282건 처리시간 0.037초

An electrochemical hydrogen peroxide sensor for applications in nuclear industry

  • Park, Junghwan;Kim, Jong Woo;Kim, Hyunjin;Yoon, Wonhyuck
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.142-147
    • /
    • 2021
  • Hydrogen peroxide is a radiolysis product of water formed under gamma-irradiation; therefore, its reliable detection is crucial in the nuclear industry for spent fuel management and coolant chemistry. This study proposes an electrochemical sensor for hydrogen peroxide detection. Cysteamine (CYST), gold nanoparticles (GNPs), and horseradish peroxidase (HRP) were used in the modification of a gold electrode for fabricating Au/CYST/GNP/HRP sensor. Each modification step of the electrode was investigated through electrochemical and physical methods. The sensor exhibited strong sensitivity and stability for the detection and measurement of hydrogen peroxide with a linear range of 1-9 mM. In addition, the Michaelis-Menten kinetic equation was applied to predict the reaction curve, and a quantitative method to define the dynamic range is suggested. The sensor is highly sensitive to H2O2 and can be applied as an electrochemical H2O2-sensor in the nuclear industry.

Nanoparticle Manipulation Using Atomic Force Microscope and X-Y Stage

  • Liu, T.S.;Wen, B.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1542-1546
    • /
    • 2003
  • Nanotechnology is an important challenge, for which nanoparticle manipulation plays an important role in the assembly of nano elements. In this study, the dynamic equation of system plant is established by van der Waals force, friction, capillary forces etc. To push nanoparticles, strain gauges are used as sensors to actuate an X-Y stage in an atomic force microscopy system. A strategy of pushing nanoparticles is developed based on sliding mode control. Moreover, afuzzy controller is responsible for compensating tip-particle contact loss according to feedback signals of a laser-detector system. According to position control result, experimental results of gold nanoparticle manipulation are presented.

  • PDF

Film Coating and Micro - Pattering Process of Nano-particle Conductive Ink System by Using ESD Method

  • Yang, Jong-Won;Jo, Sang-Hyeon;Sin, Na-Ri;Kim, Jin-Yeol
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.238.1-238.1
    • /
    • 2011
  • 본 연구에서는 non-contact deposition method의 일환인 ESD (electroctatic deposition)의 박막공정을 이용하여 Conductive layer 위에 Gold nanoparticles 및 Silver nanoparticles 등 organic/inorganic nano particle conductive ink system의 단분산 2D 박막을 제조를 연구하였다. ESD head를 통해 여러가지 organic / inorganic nano particle conductive ink system을 Deposition하였으며 분산도가 높고 균일한 단분산의 2차원 박막 구조를 얻을 수 있었으며, 전도성 PEDOT과의 Hybridization을 통해 균일상의 표면 Morphology를 갖는 고 전도성 투명 필름을 제작하였다. ESD technique를 이용하는 박막공정 기술은 나노입자 및 나노구조물의 박막화 패턴화를 포함하는 새로운 Deposition 기술로써 이를 응용하여 금속 나노입자의 2차원의 패턴화된 박막 구현을 통해 유기반도체 및 전자소자에의 응용성을 증거할 수 있었다.

  • PDF

Detection of Small Neutral Carbohydrates Using Various Supporting Materials in Laser Desorption/Ionization Mass Spectrometry

  • Yang, Hyo-Jik;Lee, Ae-Ra;Lee, Myung-Ki;Kim, Woong;Kim, Jeong-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권1호
    • /
    • pp.35-40
    • /
    • 2010
  • A comprehensive comparative investigation of small carbohydrates in laser desorption ionization was performed on supporting materials composed of sodiated 2,5-dihydroxybenzoic acid (DHB), carbon nanotubes, an ionic liquid matrix of DHB-pyridine, a binary matrix of DHB-aminopyrazine, zinc oxide nanoparticles, and gold nanoparticles. The abundance of $[M+Na]^+$ ions, where M is glucose or sucrose, was compared for each supporting material. The highest sensitivity for both glucose and sucrose, with a detection limit of 3 pmol, was observed with carbon nanotubes. Both carbon nanotubes and the ionic liquid matrix exhibited the highest reproducibility.

Nanoparticle-based Detection Technology for DNA Analysis

  • Park, Hyun-Gyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권4호
    • /
    • pp.221-226
    • /
    • 2003
  • With the current rapid development of nanotechnology and synthesis technology for designed oligonucleotides or oligonucleotide-modified nanoparticle conjugates, the combined strategies have become one of the most valuable methods in detection technology for DNA analysis. Using the uniquely recognizable interactions of pre-designed DNA molecules in assembling nanoparticles, various novel approaches have been recently developed towards detecting specific DNA sequences. Here we describe the key fundamentals and issues of this promising strategies ranging from the initial findings of rationally designed DNA-based assembly of nanoparticles to the extended chip-based detection system. Some limitations of these new strategies and possible approaches will be also discussed for the practical application in the area of DNA microarray detection.

Enhancement of Efficiency for Polymerase Chain Reaction Using Nanoparticle-Coated Graphene Oxide

  • Ju, Min-Yeong;Baek, Seung-Hun;Kim, Eun-Ju;Nguyen, Nguyen Le Thao;Park, Chan-Yeong;Park, Tae-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.375.1-375.1
    • /
    • 2016
  • Polymerase chain reaction (PCR) has revolutionized genetics and become one of the most popular techniques in modern biological and medical sciences. It can be used not only as an in vitro DNA amplification method but also used in many bioassay applications. The PCR can be used to exponentially produce a large number of DNA copies from a small quantity of DNA molecules in a few hours. However, as unwanted DNA fragments are also often manufactured, the amplification efficiency of PCR is decreased. To overcome this limitation, several nanomaterials have been employed to increase the specificity of the PCR reaction. Recently, graphene has attracted a great interest for its excellent electron transfer, thermal and biocompatibility. Especially, gold nanoparticle-coated graphene oxide (GO/AuNPs) led to enhance electron and thermal transfer rate and low-charge transfer resistance. Therefore, we report the development of a demonstration for the PCR efficiency using a large-scale production of the GO and combination of gold nanoparticles. Because a thermal conductivity is an important factor for improving the PCR efficiency in different DNA polymerases and different size samples. When PCR use GO/AuNPs, the result of transmission electron microscopy and real-time quantitative PCR (qPCR) showed an enhanced PCR efficiency. We have demonstrated that GO/AuNPs would be simply outperformed for enhancing the specificity and efficiency of DNA amplification procedure.

  • PDF

Development of Nanostructured Light-Absorbers for Ultrasound Generation by Using a Solution-Based Process

  • Sang, Pil Gyu;Heo, Jeongmin;Song, Ju Ho;Thakur, Ujwal;Park, Hui Joon;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.377-377
    • /
    • 2016
  • Under nanosecond-pulsed laser irradiation, light-absorbing thin films have been used for photoacoustic transmitters for ultrasound generation. Especially, nanostructured absorbers are attractive due to high optical absorption and efficient thermoacoustic energy conversion: for example, 2-dimensional (2-D) gold nanostructure array, synthetic gold nanoparticles, carbon nanotubes (CNTs), and reduced graphene oxides. Among them, CNT has been used to fabricate a composite film with polydimethylsiloxane (PDMS) that exhibits excellent photoacoustic conversion performance for high-frequency, high-amplitude ultrasound generation. Previously, CNT-PDMS nanocomposite films were made by using a high-temperature chemical vapor deposition (HTCVD) process for CNT growth. However, this approach is not suitable to fabricate large-area CNT films (>several cm2). This is because a chamber dimension of HTCVD is limited and also the process often causes nonuniform CNT growth when the film area increases. As an alternative approach, a solution-based process can be used to overcome these issues. We develop PDMS composite transmitters, based on the solution process, using several nanostructured light-absorbers such as CNTs, nanoink powders, and imprinted regular arrays of gold nanostructure. We compare fabrication processes of each composite transmitters and photoacoustic output performance.

  • PDF

Monitoring of the Transfer of Tetrachloroaurate(III) Ions by Thin-layer Electrochemistry and Electrochemical Deposition of Metallic Gold over a Graphite Electrode

  • Song, Ji-Seon;Shin, Hyo-Sul;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권10호
    • /
    • pp.1983-1987
    • /
    • 2008
  • This study demonstrates the electrochemical conversion of the synthetic procedure of monolayer-protected clusters using a thin toluene layer over an edge plane pyrolytic graphite electrode. A thin toluene layer with a thickness of 0.31 mm was coated over the electrode and an immiscible liquid/liquid water/toluene interface was introduced. The transfer of the tetrachloroaurate ($AuCl_4^-$) ions into the toluene layer interposed between the aqueous solution and the electrode surface was electrochemically monitored. The $AuCl_4^-$ ions initially could not move through into the toluene layer, showing no reduction wave, but, in the presence of the phase transfer reagent, tetraoctylammonium bromide (TOABr), a cathodic wave at 0.23 V vs. Ag/AgCl was observed, indicating the reduction of the transferred $AuCl_4^-$ ions in the toluene layer. In the presence of dodecanethiol together with TOABr, a self-assembled monolayer was formed over the electro-deposited metallic gold surface. The E-SEM image of the surface indicates the formation of a highly porous metallic gold surface, rather than individual nanoparticles, over the EPG electrode.